|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
"""
|
|
|
|
Check a model's accuracy on a test or val split of a dataset.
|
|
|
|
|
|
|
|
Usage:
|
|
|
|
$ yolo mode=val model=yolov8n.pt data=coco128.yaml imgsz=640
|
|
|
|
|
|
|
|
Usage - formats:
|
|
|
|
$ yolo mode=val model=yolov8n.pt # PyTorch
|
|
|
|
yolov8n.torchscript # TorchScript
|
|
|
|
yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
|
|
|
|
yolov8n_openvino_model # OpenVINO
|
|
|
|
yolov8n.engine # TensorRT
|
|
|
|
yolov8n.mlpackage # CoreML (macOS-only)
|
|
|
|
yolov8n_saved_model # TensorFlow SavedModel
|
|
|
|
yolov8n.pb # TensorFlow GraphDef
|
|
|
|
yolov8n.tflite # TensorFlow Lite
|
|
|
|
yolov8n_edgetpu.tflite # TensorFlow Edge TPU
|
|
|
|
yolov8n_paddle_model # PaddlePaddle
|
|
|
|
"""
|
|
|
|
import json
|
|
|
|
import time
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
|
|
from ultralytics.cfg import get_cfg
|
|
|
|
from ultralytics.data.utils import check_cls_dataset, check_det_dataset
|
|
|
|
from ultralytics.nn.autobackend import AutoBackend
|
|
|
|
from ultralytics.utils import DEFAULT_CFG, LOGGER, RANK, SETTINGS, TQDM_BAR_FORMAT, callbacks, colorstr, emojis
|
|
|
|
from ultralytics.utils.checks import check_imgsz
|
|
|
|
from ultralytics.utils.files import increment_path
|
|
|
|
from ultralytics.utils.ops import Profile
|
|
|
|
from ultralytics.utils.torch_utils import de_parallel, select_device, smart_inference_mode
|
|
|
|
|
|
|
|
|
|
|
|
class BaseValidator:
|
|
|
|
"""
|
|
|
|
BaseValidator
|
|
|
|
|
|
|
|
A base class for creating validators.
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
dataloader (DataLoader): Dataloader to use for validation.
|
|
|
|
pbar (tqdm): Progress bar to update during validation.
|
|
|
|
args (SimpleNamespace): Configuration for the validator.
|
|
|
|
model (nn.Module): Model to validate.
|
|
|
|
data (dict): Data dictionary.
|
|
|
|
device (torch.device): Device to use for validation.
|
|
|
|
batch_i (int): Current batch index.
|
|
|
|
training (bool): Whether the model is in training mode.
|
|
|
|
names (dict): Class names.
|
|
|
|
seen: Records the number of images seen so far during validation.
|
|
|
|
stats: Placeholder for statistics during validation.
|
|
|
|
confusion_matrix: Placeholder for a confusion matrix.
|
|
|
|
nc: Number of classes.
|
|
|
|
iouv: (torch.Tensor): IoU thresholds from 0.50 to 0.95 in spaces of 0.05.
|
|
|
|
jdict (dict): Dictionary to store JSON validation results.
|
|
|
|
speed (dict): Dictionary with keys 'preprocess', 'inference', 'loss', 'postprocess' and their respective
|
|
|
|
batch processing times in milliseconds.
|
|
|
|
save_dir (Path): Directory to save results.
|
|
|
|
plots (dict): Dictionary to store plots for visualization.
|
|
|
|
callbacks (dict): Dictionary to store various callback functions.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
|
|
|
|
"""
|
|
|
|
Initializes a BaseValidator instance.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
dataloader (torch.utils.data.DataLoader): Dataloader to be used for validation.
|
|
|
|
save_dir (Path): Directory to save results.
|
|
|
|
pbar (tqdm.tqdm): Progress bar for displaying progress.
|
|
|
|
args (SimpleNamespace): Configuration for the validator.
|
|
|
|
_callbacks (dict): Dictionary to store various callback functions.
|
|
|
|
"""
|
|
|
|
self.dataloader = dataloader
|
|
|
|
self.pbar = pbar
|
|
|
|
self.args = args or get_cfg(DEFAULT_CFG)
|
|
|
|
self.model = None
|
|
|
|
self.data = None
|
|
|
|
self.device = None
|
|
|
|
self.batch_i = None
|
|
|
|
self.training = True
|
|
|
|
self.names = None
|
|
|
|
self.seen = None
|
|
|
|
self.stats = None
|
|
|
|
self.confusion_matrix = None
|
|
|
|
self.nc = None
|
|
|
|
self.iouv = None
|
|
|
|
self.jdict = None
|
|
|
|
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
|
|
|
|
|
|
|
|
project = self.args.project or Path(SETTINGS['runs_dir']) / self.args.task
|
|
|
|
name = self.args.name or f'{self.args.mode}'
|
|
|
|
self.save_dir = save_dir or increment_path(Path(project) / name,
|
|
|
|
exist_ok=self.args.exist_ok if RANK in (-1, 0) else True)
|
|
|
|
(self.save_dir / 'labels' if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
|
|
if self.args.conf is None:
|
|
|
|
self.args.conf = 0.001 # default conf=0.001
|
|
|
|
|
|
|
|
self.plots = {}
|
|
|
|
self.callbacks = _callbacks or callbacks.get_default_callbacks()
|
|
|
|
|
|
|
|
@smart_inference_mode()
|
|
|
|
def __call__(self, trainer=None, model=None):
|
|
|
|
"""
|
|
|
|
Supports validation of a pre-trained model if passed or a model being trained
|
|
|
|
if trainer is passed (trainer gets priority).
|
|
|
|
"""
|
|
|
|
self.training = trainer is not None
|
|
|
|
augment = self.args.augment and (not self.training)
|
|
|
|
if self.training:
|
|
|
|
self.device = trainer.device
|
|
|
|
self.data = trainer.data
|
|
|
|
model = trainer.ema.ema or trainer.model
|
|
|
|
self.args.half = self.device.type != 'cpu' # force FP16 val during training
|
|
|
|
model = model.half() if self.args.half else model.float()
|
|
|
|
self.model = model
|
|
|
|
self.loss = torch.zeros_like(trainer.loss_items, device=trainer.device)
|
|
|
|
self.args.plots = trainer.stopper.possible_stop or (trainer.epoch == trainer.epochs - 1)
|
|
|
|
model.eval()
|
|
|
|
else:
|
|
|
|
callbacks.add_integration_callbacks(self)
|
|
|
|
self.run_callbacks('on_val_start')
|
|
|
|
assert model is not None, 'Either trainer or model is needed for validation'
|
|
|
|
model = AutoBackend(model,
|
|
|
|
device=select_device(self.args.device, self.args.batch),
|
|
|
|
dnn=self.args.dnn,
|
|
|
|
data=self.args.data,
|
|
|
|
fp16=self.args.half)
|
|
|
|
self.model = model
|
|
|
|
self.device = model.device # update device
|
|
|
|
self.args.half = model.fp16 # update half
|
|
|
|
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
|
|
|
|
imgsz = check_imgsz(self.args.imgsz, stride=stride)
|
|
|
|
if engine:
|
|
|
|
self.args.batch = model.batch_size
|
|
|
|
elif not pt and not jit:
|
|
|
|
self.args.batch = 1 # export.py models default to batch-size 1
|
|
|
|
LOGGER.info(f'Forcing batch=1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
|
|
|
|
|
|
|
|
if isinstance(self.args.data, str) and self.args.data.split('.')[-1] in ('yaml', 'yml'):
|
|
|
|
self.data = check_det_dataset(self.args.data)
|
|
|
|
elif self.args.task == 'classify':
|
|
|
|
self.data = check_cls_dataset(self.args.data, split=self.args.split)
|
|
|
|
else:
|
|
|
|
raise FileNotFoundError(emojis(f"Dataset '{self.args.data}' for task={self.args.task} not found ❌"))
|
|
|
|
|
|
|
|
if self.device.type == 'cpu':
|
|
|
|
self.args.workers = 0 # faster CPU val as time dominated by inference, not dataloading
|
|
|
|
if not pt:
|
|
|
|
self.args.rect = False
|
|
|
|
self.dataloader = self.dataloader or self.get_dataloader(self.data.get(self.args.split), self.args.batch)
|
|
|
|
|
|
|
|
model.eval()
|
|
|
|
model.warmup(imgsz=(1 if pt else self.args.batch, 1, imgsz, imgsz)) # warmup
|
|
|
|
|
|
|
|
dt = Profile(), Profile(), Profile(), Profile()
|
|
|
|
n_batches = len(self.dataloader)
|
|
|
|
desc = self.get_desc()
|
|
|
|
# NOTE: keeping `not self.training` in tqdm will eliminate pbar after segmentation evaluation during training,
|
|
|
|
# which may affect classification task since this arg is in yolov5/classify/val.py.
|
|
|
|
# bar = tqdm(self.dataloader, desc, n_batches, not self.training, bar_format=TQDM_BAR_FORMAT)
|
|
|
|
bar = tqdm(self.dataloader, desc, n_batches, bar_format=TQDM_BAR_FORMAT)
|
|
|
|
self.init_metrics(de_parallel(model))
|
|
|
|
self.jdict = [] # empty before each val
|
|
|
|
for batch_i, batch in enumerate(bar):
|
|
|
|
self.run_callbacks('on_val_batch_start')
|
|
|
|
self.batch_i = batch_i
|
|
|
|
# Preprocess
|
|
|
|
with dt[0]:
|
|
|
|
batch = self.preprocess(batch)
|
|
|
|
|
|
|
|
# Inference
|
|
|
|
with dt[1]:
|
|
|
|
preds = model(batch['img'], augment=augment)
|
|
|
|
|
|
|
|
# Loss
|
|
|
|
with dt[2]:
|
|
|
|
if self.training:
|
|
|
|
self.loss += model.loss(batch, preds)[1]
|
|
|
|
|
|
|
|
# Postprocess
|
|
|
|
with dt[3]:
|
|
|
|
preds = self.postprocess(preds)
|
|
|
|
|
|
|
|
self.update_metrics(preds, batch)
|
|
|
|
if self.args.plots and batch_i < 3:
|
|
|
|
self.plot_val_samples(batch, batch_i)
|
|
|
|
self.plot_predictions(batch, preds, batch_i)
|
|
|
|
|
|
|
|
self.run_callbacks('on_val_batch_end')
|
|
|
|
stats = self.get_stats()
|
|
|
|
self.check_stats(stats)
|
|
|
|
self.speed = dict(zip(self.speed.keys(), (x.t / len(self.dataloader.dataset) * 1E3 for x in dt)))
|
|
|
|
self.finalize_metrics()
|
|
|
|
self.print_results()
|
|
|
|
self.run_callbacks('on_val_end')
|
|
|
|
if self.training:
|
|
|
|
model.float()
|
|
|
|
results = {**stats, **trainer.label_loss_items(self.loss.cpu() / len(self.dataloader), prefix='val')}
|
|
|
|
return {k: round(float(v), 5) for k, v in results.items()} # return results as 5 decimal place floats
|
|
|
|
else:
|
|
|
|
LOGGER.info('Speed: %.1fms preprocess, %.1fms inference, %.1fms loss, %.1fms postprocess per image' %
|
|
|
|
tuple(self.speed.values()))
|
|
|
|
if self.args.save_json and self.jdict:
|
|
|
|
with open(str(self.save_dir / 'predictions.json'), 'w') as f:
|
|
|
|
LOGGER.info(f'Saving {f.name}...')
|
|
|
|
json.dump(self.jdict, f) # flatten and save
|
|
|
|
stats = self.eval_json(stats) # update stats
|
|
|
|
if self.args.plots or self.args.save_json:
|
|
|
|
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}")
|
|
|
|
return stats
|
|
|
|
|
|
|
|
def match_predictions(self, pred_classes, true_classes, iou):
|
|
|
|
"""
|
|
|
|
Matches predictions to ground truth objects (pred_classes, true_classes) using IoU.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
pred_classes (torch.Tensor): Predicted class indices of shape(N,).
|
|
|
|
true_classes (torch.Tensor): Target class indices of shape(M,).
|
|
|
|
iou (torch.Tensor): IoU thresholds from 0.50 to 0.95 in space of 0.05.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(torch.Tensor): Correct tensor of shape(N,10) for 10 IoU thresholds.
|
|
|
|
"""
|
|
|
|
correct = np.zeros((pred_classes.shape[0], self.iouv.shape[0])).astype(bool)
|
|
|
|
correct_class = true_classes[:, None] == pred_classes
|
|
|
|
for i, iouv in enumerate(self.iouv):
|
|
|
|
x = torch.nonzero(iou.ge(iouv) & correct_class) # IoU > threshold and classes match
|
|
|
|
if x.shape[0]:
|
|
|
|
# Concatenate [label, detect, iou]
|
|
|
|
matches = torch.cat((x, iou[x[:, 0], x[:, 1]].unsqueeze(1)), 1).cpu().numpy()
|
|
|
|
if x.shape[0] > 1:
|
|
|
|
matches = matches[matches[:, 2].argsort()[::-1]]
|
|
|
|
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
|
|
|
# matches = matches[matches[:, 2].argsort()[::-1]]
|
|
|
|
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
|
|
|
correct[matches[:, 1].astype(int), i] = True
|
|
|
|
return torch.tensor(correct, dtype=torch.bool, device=pred_classes.device)
|
|
|
|
|
|
|
|
def add_callback(self, event: str, callback):
|
|
|
|
"""Appends the given callback."""
|
|
|
|
self.callbacks[event].append(callback)
|
|
|
|
|
|
|
|
def run_callbacks(self, event: str):
|
|
|
|
"""Runs all callbacks associated with a specified event."""
|
|
|
|
for callback in self.callbacks.get(event, []):
|
|
|
|
callback(self)
|
|
|
|
|
|
|
|
def get_dataloader(self, dataset_path, batch_size):
|
|
|
|
"""Get data loader from dataset path and batch size."""
|
|
|
|
raise NotImplementedError('get_dataloader function not implemented for this validator')
|
|
|
|
|
|
|
|
def build_dataset(self, img_path):
|
|
|
|
"""Build dataset"""
|
|
|
|
raise NotImplementedError('build_dataset function not implemented in validator')
|
|
|
|
|
|
|
|
def preprocess(self, batch):
|
|
|
|
"""Preprocesses an input batch."""
|
|
|
|
return batch
|
|
|
|
|
|
|
|
def postprocess(self, preds):
|
|
|
|
"""Describes and summarizes the purpose of 'postprocess()' but no details mentioned."""
|
|
|
|
return preds
|
|
|
|
|
|
|
|
def init_metrics(self, model):
|
|
|
|
"""Initialize performance metrics for the YOLO model."""
|
|
|
|
pass
|
|
|
|
|
|
|
|
def update_metrics(self, preds, batch):
|
|
|
|
"""Updates metrics based on predictions and batch."""
|
|
|
|
pass
|
|
|
|
|
|
|
|
def finalize_metrics(self, *args, **kwargs):
|
|
|
|
"""Finalizes and returns all metrics."""
|
|
|
|
pass
|
|
|
|
|
|
|
|
def get_stats(self):
|
|
|
|
"""Returns statistics about the model's performance."""
|
|
|
|
return {}
|
|
|
|
|
|
|
|
def check_stats(self, stats):
|
|
|
|
"""Checks statistics."""
|
|
|
|
pass
|
|
|
|
|
|
|
|
def print_results(self):
|
|
|
|
"""Prints the results of the model's predictions."""
|
|
|
|
pass
|
|
|
|
|
|
|
|
def get_desc(self):
|
|
|
|
"""Get description of the YOLO model."""
|
|
|
|
pass
|
|
|
|
|
|
|
|
@property
|
|
|
|
def metric_keys(self):
|
|
|
|
"""Returns the metric keys used in YOLO training/validation."""
|
|
|
|
return []
|
|
|
|
|
|
|
|
def on_plot(self, name, data=None):
|
|
|
|
"""Registers plots (e.g. to be consumed in callbacks)"""
|
|
|
|
path = Path(name)
|
|
|
|
self.plots[path] = {'data': data, 'timestamp': time.time()}
|
|
|
|
|
|
|
|
# TODO: may need to put these following functions into callback
|
|
|
|
def plot_val_samples(self, batch, ni):
|
|
|
|
"""Plots validation samples during training."""
|
|
|
|
pass
|
|
|
|
|
|
|
|
def plot_predictions(self, batch, preds, ni):
|
|
|
|
"""Plots YOLO model predictions on batch images."""
|
|
|
|
pass
|
|
|
|
|
|
|
|
def pred_to_json(self, preds, batch):
|
|
|
|
"""Convert predictions to JSON format."""
|
|
|
|
pass
|
|
|
|
|
|
|
|
def eval_json(self, stats):
|
|
|
|
"""Evaluate and return JSON format of prediction statistics."""
|
|
|
|
pass
|