|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
import signal
|
|
|
|
import sys
|
|
|
|
from pathlib import Path
|
|
|
|
from time import sleep
|
|
|
|
|
|
|
|
import requests
|
|
|
|
|
|
|
|
from ultralytics.hub.utils import HUB_API_ROOT, PREFIX, smart_request
|
|
|
|
from ultralytics.utils import LOGGER, __version__, checks, emojis, is_colab, threaded
|
|
|
|
from ultralytics.utils.errors import HUBModelError
|
|
|
|
|
|
|
|
AGENT_NAME = f'python-{__version__}-colab' if is_colab() else f'python-{__version__}-local'
|
|
|
|
|
|
|
|
|
|
|
|
class HUBTrainingSession:
|
|
|
|
"""
|
|
|
|
HUB training session for Ultralytics HUB YOLO models. Handles model initialization, heartbeats, and checkpointing.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
url (str): Model identifier used to initialize the HUB training session.
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
agent_id (str): Identifier for the instance communicating with the server.
|
|
|
|
model_id (str): Identifier for the YOLOv5 model being trained.
|
|
|
|
model_url (str): URL for the model in Ultralytics HUB.
|
|
|
|
api_url (str): API URL for the model in Ultralytics HUB.
|
|
|
|
auth_header (dict): Authentication header for the Ultralytics HUB API requests.
|
|
|
|
rate_limits (dict): Rate limits for different API calls (in seconds).
|
|
|
|
timers (dict): Timers for rate limiting.
|
|
|
|
metrics_queue (dict): Queue for the model's metrics.
|
|
|
|
model (dict): Model data fetched from Ultralytics HUB.
|
|
|
|
alive (bool): Indicates if the heartbeat loop is active.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, url):
|
|
|
|
"""
|
|
|
|
Initialize the HUBTrainingSession with the provided model identifier.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
url (str): Model identifier used to initialize the HUB training session.
|
|
|
|
It can be a URL string or a model key with specific format.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: If the provided model identifier is invalid.
|
|
|
|
ConnectionError: If connecting with global API key is not supported.
|
|
|
|
"""
|
|
|
|
|
|
|
|
from ultralytics.hub.auth import Auth
|
|
|
|
|
|
|
|
# Parse input
|
|
|
|
if url.startswith('https://hub.ultralytics.com/models/'):
|
|
|
|
url = url.split('https://hub.ultralytics.com/models/')[-1]
|
|
|
|
if [len(x) for x in url.split('_')] == [42, 20]:
|
|
|
|
key, model_id = url.split('_')
|
|
|
|
elif len(url) == 20:
|
|
|
|
key, model_id = '', url
|
|
|
|
else:
|
|
|
|
raise HUBModelError(f"model='{url}' not found. Check format is correct, i.e. "
|
|
|
|
f"model='https://hub.ultralytics.com/models/MODEL_ID' and try again.")
|
|
|
|
|
|
|
|
# Authorize
|
|
|
|
auth = Auth(key)
|
|
|
|
self.agent_id = None # identifies which instance is communicating with server
|
|
|
|
self.model_id = model_id
|
|
|
|
self.model_url = f'https://hub.ultralytics.com/models/{model_id}'
|
|
|
|
self.api_url = f'{HUB_API_ROOT}/v1/models/{model_id}'
|
|
|
|
self.auth_header = auth.get_auth_header()
|
|
|
|
self.rate_limits = {'metrics': 3.0, 'ckpt': 900.0, 'heartbeat': 300.0} # rate limits (seconds)
|
|
|
|
self.timers = {} # rate limit timers (seconds)
|
|
|
|
self.metrics_queue = {} # metrics queue
|
|
|
|
self.model = self._get_model()
|
|
|
|
self.alive = True
|
|
|
|
self._start_heartbeat() # start heartbeats
|
|
|
|
self._register_signal_handlers()
|
|
|
|
LOGGER.info(f'{PREFIX}View model at {self.model_url} 🚀')
|
|
|
|
|
|
|
|
def _register_signal_handlers(self):
|
|
|
|
"""Register signal handlers for SIGTERM and SIGINT signals to gracefully handle termination."""
|
|
|
|
signal.signal(signal.SIGTERM, self._handle_signal)
|
|
|
|
signal.signal(signal.SIGINT, self._handle_signal)
|
|
|
|
|
|
|
|
def _handle_signal(self, signum, frame):
|
|
|
|
"""
|
|
|
|
Handle kill signals and prevent heartbeats from being sent on Colab after termination.
|
|
|
|
This method does not use frame, it is included as it is passed by signal.
|
|
|
|
"""
|
|
|
|
if self.alive is True:
|
|
|
|
LOGGER.info(f'{PREFIX}Kill signal received! ❌')
|
|
|
|
self._stop_heartbeat()
|
|
|
|
sys.exit(signum)
|
|
|
|
|
|
|
|
def _stop_heartbeat(self):
|
|
|
|
"""Terminate the heartbeat loop."""
|
|
|
|
self.alive = False
|
|
|
|
|
|
|
|
def upload_metrics(self):
|
|
|
|
"""Upload model metrics to Ultralytics HUB."""
|
|
|
|
payload = {'metrics': self.metrics_queue.copy(), 'type': 'metrics'}
|
|
|
|
smart_request('post', self.api_url, json=payload, headers=self.auth_header, code=2)
|
|
|
|
|
|
|
|
def _get_model(self):
|
|
|
|
"""Fetch and return model data from Ultralytics HUB."""
|
|
|
|
api_url = f'{HUB_API_ROOT}/v1/models/{self.model_id}'
|
|
|
|
|
|
|
|
try:
|
|
|
|
response = smart_request('get', api_url, headers=self.auth_header, thread=False, code=0)
|
|
|
|
data = response.json().get('data', None)
|
|
|
|
|
|
|
|
if data.get('status', None) == 'trained':
|
|
|
|
raise ValueError(emojis(f'Model is already trained and uploaded to {self.model_url} 🚀'))
|
|
|
|
|
|
|
|
if not data.get('data', None):
|
|
|
|
raise ValueError('Dataset may still be processing. Please wait a minute and try again.') # RF fix
|
|
|
|
self.model_id = data['id']
|
|
|
|
|
|
|
|
if data['status'] == 'new': # new model to start training
|
|
|
|
self.train_args = {
|
|
|
|
# TODO: deprecate 'batch_size' key for 'batch' in 3Q23
|
|
|
|
'batch': data['batch' if ('batch' in data) else 'batch_size'],
|
|
|
|
'epochs': data['epochs'],
|
|
|
|
'imgsz': data['imgsz'],
|
|
|
|
'patience': data['patience'],
|
|
|
|
'device': data['device'],
|
|
|
|
'cache': data['cache'],
|
|
|
|
'data': data['data']}
|
|
|
|
self.model_file = data.get('cfg') or data.get('weights') # cfg for pretrained=False
|
|
|
|
self.model_file = checks.check_yolov5u_filename(self.model_file, verbose=False) # YOLOv5->YOLOv5u
|
|
|
|
elif data['status'] == 'training': # existing model to resume training
|
|
|
|
self.train_args = {'data': data['data'], 'resume': True}
|
|
|
|
self.model_file = data['resume']
|
|
|
|
|
|
|
|
return data
|
|
|
|
except requests.exceptions.ConnectionError as e:
|
|
|
|
raise ConnectionRefusedError('ERROR: The HUB server is not online. Please try again later.') from e
|
|
|
|
except Exception:
|
|
|
|
raise
|
|
|
|
|
|
|
|
def upload_model(self, epoch, weights, is_best=False, map=0.0, final=False):
|
|
|
|
"""
|
|
|
|
Upload a model checkpoint to Ultralytics HUB.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
epoch (int): The current training epoch.
|
|
|
|
weights (str): Path to the model weights file.
|
|
|
|
is_best (bool): Indicates if the current model is the best one so far.
|
|
|
|
map (float): Mean average precision of the model.
|
|
|
|
final (bool): Indicates if the model is the final model after training.
|
|
|
|
"""
|
|
|
|
if Path(weights).is_file():
|
|
|
|
with open(weights, 'rb') as f:
|
|
|
|
file = f.read()
|
|
|
|
else:
|
|
|
|
LOGGER.warning(f'{PREFIX}WARNING ⚠️ Model upload issue. Missing model {weights}.')
|
|
|
|
file = None
|
|
|
|
url = f'{self.api_url}/upload'
|
|
|
|
# url = 'http://httpbin.org/post' # for debug
|
|
|
|
data = {'epoch': epoch}
|
|
|
|
if final:
|
|
|
|
data.update({'type': 'final', 'map': map})
|
|
|
|
smart_request('post',
|
|
|
|
url,
|
|
|
|
data=data,
|
|
|
|
files={'best.pt': file},
|
|
|
|
headers=self.auth_header,
|
|
|
|
retry=10,
|
|
|
|
timeout=3600,
|
|
|
|
thread=False,
|
|
|
|
progress=True,
|
|
|
|
code=4)
|
|
|
|
else:
|
|
|
|
data.update({'type': 'epoch', 'isBest': bool(is_best)})
|
|
|
|
smart_request('post', url, data=data, files={'last.pt': file}, headers=self.auth_header, code=3)
|
|
|
|
|
|
|
|
@threaded
|
|
|
|
def _start_heartbeat(self):
|
|
|
|
"""Begin a threaded heartbeat loop to report the agent's status to Ultralytics HUB."""
|
|
|
|
while self.alive:
|
|
|
|
r = smart_request('post',
|
|
|
|
f'{HUB_API_ROOT}/v1/agent/heartbeat/models/{self.model_id}',
|
|
|
|
json={
|
|
|
|
'agent': AGENT_NAME,
|
|
|
|
'agentId': self.agent_id},
|
|
|
|
headers=self.auth_header,
|
|
|
|
retry=0,
|
|
|
|
code=5,
|
|
|
|
thread=False) # already in a thread
|
|
|
|
self.agent_id = r.json().get('data', {}).get('agentId', None)
|
|
|
|
sleep(self.rate_limits['heartbeat'])
|