|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import scipy
|
|
|
|
from scipy.spatial.distance import cdist
|
|
|
|
|
|
|
|
from ultralytics.utils.metrics import bbox_ioa
|
|
|
|
|
|
|
|
try:
|
|
|
|
import lap # for linear_assignment
|
|
|
|
|
|
|
|
assert lap.__version__ # verify package is not directory
|
|
|
|
except (ImportError, AssertionError, AttributeError):
|
|
|
|
from ultralytics.utils.checks import check_requirements
|
|
|
|
|
|
|
|
check_requirements('lapx>=0.5.2') # update to lap package from https://github.com/rathaROG/lapx
|
|
|
|
import lap
|
|
|
|
|
|
|
|
|
|
|
|
def linear_assignment(cost_matrix, thresh, use_lap=True):
|
|
|
|
"""
|
|
|
|
Perform linear assignment using scipy or lap.lapjv.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
cost_matrix (np.ndarray): The matrix containing cost values for assignments.
|
|
|
|
thresh (float): Threshold for considering an assignment valid.
|
|
|
|
use_lap (bool, optional): Whether to use lap.lapjv. Defaults to True.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(tuple): Tuple containing matched indices, unmatched indices from 'a', and unmatched indices from 'b'.
|
|
|
|
"""
|
|
|
|
|
|
|
|
if cost_matrix.size == 0:
|
|
|
|
return np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1]))
|
|
|
|
|
|
|
|
if use_lap:
|
|
|
|
_, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh)
|
|
|
|
matches = [[ix, mx] for ix, mx in enumerate(x) if mx >= 0]
|
|
|
|
unmatched_a = np.where(x < 0)[0]
|
|
|
|
unmatched_b = np.where(y < 0)[0]
|
|
|
|
else:
|
|
|
|
# Scipy linear sum assignment is NOT working correctly, DO NOT USE
|
|
|
|
y, x = scipy.optimize.linear_sum_assignment(cost_matrix) # row y, col x
|
|
|
|
matches = np.asarray([[i, x] for i, x in enumerate(x) if cost_matrix[i, x] <= thresh])
|
|
|
|
unmatched = np.ones(cost_matrix.shape)
|
|
|
|
for i, xi in matches:
|
|
|
|
unmatched[i, xi] = 0.0
|
|
|
|
unmatched_a = np.where(unmatched.all(1))[0]
|
|
|
|
unmatched_b = np.where(unmatched.all(0))[0]
|
|
|
|
|
|
|
|
return matches, unmatched_a, unmatched_b
|
|
|
|
|
|
|
|
|
|
|
|
def iou_distance(atracks, btracks):
|
|
|
|
"""
|
|
|
|
Compute cost based on Intersection over Union (IoU) between tracks.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
atracks (list[STrack] | list[np.ndarray]): List of tracks 'a' or bounding boxes.
|
|
|
|
btracks (list[STrack] | list[np.ndarray]): List of tracks 'b' or bounding boxes.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(np.ndarray): Cost matrix computed based on IoU.
|
|
|
|
"""
|
|
|
|
|
|
|
|
if (len(atracks) > 0 and isinstance(atracks[0], np.ndarray)) \
|
|
|
|
or (len(btracks) > 0 and isinstance(btracks[0], np.ndarray)):
|
|
|
|
atlbrs = atracks
|
|
|
|
btlbrs = btracks
|
|
|
|
else:
|
|
|
|
atlbrs = [track.tlbr for track in atracks]
|
|
|
|
btlbrs = [track.tlbr for track in btracks]
|
|
|
|
|
|
|
|
ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float32)
|
|
|
|
if len(atlbrs) and len(btlbrs):
|
|
|
|
ious = bbox_ioa(np.ascontiguousarray(atlbrs, dtype=np.float32),
|
|
|
|
np.ascontiguousarray(btlbrs, dtype=np.float32),
|
|
|
|
iou=True)
|
|
|
|
return 1 - ious # cost matrix
|
|
|
|
|
|
|
|
|
|
|
|
def embedding_distance(tracks, detections, metric='cosine'):
|
|
|
|
"""
|
|
|
|
Compute distance between tracks and detections based on embeddings.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
tracks (list[STrack]): List of tracks.
|
|
|
|
detections (list[BaseTrack]): List of detections.
|
|
|
|
metric (str, optional): Metric for distance computation. Defaults to 'cosine'.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(np.ndarray): Cost matrix computed based on embeddings.
|
|
|
|
"""
|
|
|
|
|
|
|
|
cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float32)
|
|
|
|
if cost_matrix.size == 0:
|
|
|
|
return cost_matrix
|
|
|
|
det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float32)
|
|
|
|
# for i, track in enumerate(tracks):
|
|
|
|
# cost_matrix[i, :] = np.maximum(0.0, cdist(track.smooth_feat.reshape(1,-1), det_features, metric))
|
|
|
|
track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float32)
|
|
|
|
cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric)) # Normalized features
|
|
|
|
return cost_matrix
|
|
|
|
|
|
|
|
|
|
|
|
def fuse_score(cost_matrix, detections):
|
|
|
|
"""
|
|
|
|
Fuses cost matrix with detection scores to produce a single similarity matrix.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
cost_matrix (np.ndarray): The matrix containing cost values for assignments.
|
|
|
|
detections (list[BaseTrack]): List of detections with scores.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(np.ndarray): Fused similarity matrix.
|
|
|
|
"""
|
|
|
|
|
|
|
|
if cost_matrix.size == 0:
|
|
|
|
return cost_matrix
|
|
|
|
iou_sim = 1 - cost_matrix
|
|
|
|
det_scores = np.array([det.score for det in detections])
|
|
|
|
det_scores = np.expand_dims(det_scores, axis=0).repeat(cost_matrix.shape[0], axis=0)
|
|
|
|
fuse_sim = iou_sim * det_scores
|
|
|
|
return 1 - fuse_sim # fuse_cost
|