|
|
|
# Ultralytics YOLO 🚀, GPL-3.0 license
|
|
|
|
import contextlib
|
|
|
|
import re
|
|
|
|
import shutil
|
|
|
|
import sys
|
|
|
|
from difflib import get_close_matches
|
|
|
|
from pathlib import Path
|
|
|
|
from types import SimpleNamespace
|
|
|
|
from typing import Dict, List, Union
|
|
|
|
|
|
|
|
from ultralytics.yolo.utils import (DEFAULT_CFG, DEFAULT_CFG_DICT, DEFAULT_CFG_PATH, LOGGER, ROOT, USER_CONFIG_DIR,
|
|
|
|
IterableSimpleNamespace, __version__, checks, colorstr, yaml_load, yaml_print)
|
|
|
|
|
|
|
|
CLI_HELP_MSG = \
|
|
|
|
"""
|
|
|
|
YOLOv8 'yolo' CLI commands use the following syntax:
|
|
|
|
|
|
|
|
yolo TASK MODE ARGS
|
|
|
|
|
|
|
|
Where TASK (optional) is one of [detect, segment, classify]
|
|
|
|
MODE (required) is one of [train, val, predict, export]
|
|
|
|
ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults.
|
|
|
|
See all ARGS at https://docs.ultralytics.com/cfg or with 'yolo cfg'
|
|
|
|
|
|
|
|
1. Train a detection model for 10 epochs with an initial learning_rate of 0.01
|
|
|
|
yolo train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
|
|
|
|
|
|
|
|
2. Predict a YouTube video using a pretrained segmentation model at image size 320:
|
|
|
|
yolo predict model=yolov8n-seg.pt source='https://youtu.be/Zgi9g1ksQHc' imgsz=320
|
|
|
|
|
|
|
|
3. Val a pretrained detection model at batch-size 1 and image size 640:
|
|
|
|
yolo val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640
|
|
|
|
|
|
|
|
4. Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required)
|
|
|
|
yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128
|
|
|
|
|
|
|
|
5. Run special commands:
|
|
|
|
yolo help
|
|
|
|
yolo checks
|
|
|
|
yolo version
|
|
|
|
yolo settings
|
|
|
|
yolo copy-cfg
|
|
|
|
yolo cfg
|
|
|
|
|
|
|
|
Docs: https://docs.ultralytics.com/cli
|
|
|
|
Community: https://community.ultralytics.com
|
|
|
|
GitHub: https://github.com/ultralytics/ultralytics
|
|
|
|
"""
|
|
|
|
|
|
|
|
CFG_FLOAT_KEYS = {'warmup_epochs', 'box', 'cls', 'dfl', 'degrees', 'shear'}
|
|
|
|
CFG_FRACTION_KEYS = {
|
|
|
|
'dropout', 'iou', 'lr0', 'lrf', 'momentum', 'weight_decay', 'warmup_momentum', 'warmup_bias_lr', 'fl_gamma',
|
|
|
|
'label_smoothing', 'hsv_h', 'hsv_s', 'hsv_v', 'translate', 'scale', 'perspective', 'flipud', 'fliplr', 'mosaic',
|
|
|
|
'mixup', 'copy_paste', 'conf', 'iou'}
|
|
|
|
CFG_INT_KEYS = {
|
|
|
|
'epochs', 'patience', 'batch', 'workers', 'seed', 'close_mosaic', 'mask_ratio', 'max_det', 'vid_stride',
|
|
|
|
'line_thickness', 'workspace', 'nbs', 'save_period'}
|
|
|
|
CFG_BOOL_KEYS = {
|
|
|
|
'save', 'exist_ok', 'pretrained', 'verbose', 'deterministic', 'single_cls', 'image_weights', 'rect', 'cos_lr',
|
|
|
|
'overlap_mask', 'val', 'save_json', 'save_hybrid', 'half', 'dnn', 'plots', 'show', 'save_txt', 'save_conf',
|
|
|
|
'save_crop', 'hide_labels', 'hide_conf', 'visualize', 'augment', 'agnostic_nms', 'retina_masks', 'boxes', 'keras',
|
|
|
|
'optimize', 'int8', 'dynamic', 'simplify', 'nms', 'v5loader'}
|
|
|
|
|
|
|
|
|
|
|
|
def cfg2dict(cfg):
|
|
|
|
"""
|
|
|
|
Convert a configuration object to a dictionary.
|
|
|
|
|
|
|
|
This function converts a configuration object to a dictionary, whether it is a file path, a string, or a SimpleNamespace object.
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
cfg (str) or (Path) or (SimpleNamespace): Configuration object to be converted to a dictionary.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
cfg (dict): Configuration object in dictionary format.
|
|
|
|
"""
|
|
|
|
if isinstance(cfg, (str, Path)):
|
|
|
|
cfg = yaml_load(cfg) # load dict
|
|
|
|
elif isinstance(cfg, SimpleNamespace):
|
|
|
|
cfg = vars(cfg) # convert to dict
|
|
|
|
return cfg
|
|
|
|
|
|
|
|
|
|
|
|
def get_cfg(cfg: Union[str, Path, Dict, SimpleNamespace] = DEFAULT_CFG_DICT, overrides: Dict = None):
|
|
|
|
"""
|
|
|
|
Load and merge configuration data from a file or dictionary.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
cfg (str) or (Path) or (Dict) or (SimpleNamespace): Configuration data.
|
|
|
|
overrides (str) or (Dict), optional: Overrides in the form of a file name or a dictionary. Default is None.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(SimpleNamespace): Training arguments namespace.
|
|
|
|
"""
|
|
|
|
cfg = cfg2dict(cfg)
|
|
|
|
|
|
|
|
# Merge overrides
|
|
|
|
if overrides:
|
|
|
|
overrides = cfg2dict(overrides)
|
|
|
|
check_cfg_mismatch(cfg, overrides)
|
|
|
|
cfg = {**cfg, **overrides} # merge cfg and overrides dicts (prefer overrides)
|
|
|
|
|
|
|
|
# Special handling for numeric project/names
|
|
|
|
for k in 'project', 'name':
|
|
|
|
if k in cfg and isinstance(cfg[k], (int, float)):
|
|
|
|
cfg[k] = str(cfg[k])
|
|
|
|
|
|
|
|
# Type and Value checks
|
|
|
|
for k, v in cfg.items():
|
|
|
|
if v is not None: # None values may be from optional args
|
|
|
|
if k in CFG_FLOAT_KEYS and not isinstance(v, (int, float)):
|
|
|
|
raise TypeError(f"'{k}={v}' is of invalid type {type(v).__name__}. "
|
|
|
|
f"Valid '{k}' types are int (i.e. '{k}=0') or float (i.e. '{k}=0.5')")
|
|
|
|
elif k in CFG_FRACTION_KEYS:
|
|
|
|
if not isinstance(v, (int, float)):
|
|
|
|
raise TypeError(f"'{k}={v}' is of invalid type {type(v).__name__}. "
|
|
|
|
f"Valid '{k}' types are int (i.e. '{k}=0') or float (i.e. '{k}=0.5')")
|
|
|
|
if not (0.0 <= v <= 1.0):
|
|
|
|
raise ValueError(f"'{k}={v}' is an invalid value. "
|
|
|
|
f"Valid '{k}' values are between 0.0 and 1.0.")
|
|
|
|
elif k in CFG_INT_KEYS and not isinstance(v, int):
|
|
|
|
raise TypeError(f"'{k}={v}' is of invalid type {type(v).__name__}. "
|
|
|
|
f"'{k}' must be an int (i.e. '{k}=8')")
|
|
|
|
elif k in CFG_BOOL_KEYS and not isinstance(v, bool):
|
|
|
|
raise TypeError(f"'{k}={v}' is of invalid type {type(v).__name__}. "
|
|
|
|
f"'{k}' must be a bool (i.e. '{k}=True' or '{k}=False')")
|
|
|
|
|
|
|
|
# Return instance
|
|
|
|
return IterableSimpleNamespace(**cfg)
|
|
|
|
|
|
|
|
|
|
|
|
def check_cfg_mismatch(base: Dict, custom: Dict, e=None):
|
|
|
|
"""
|
|
|
|
This function checks for any mismatched keys between a custom configuration list and a base configuration list.
|
|
|
|
If any mismatched keys are found, the function prints out similar keys from the base list and exits the program.
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
- custom (Dict): a dictionary of custom configuration options
|
|
|
|
- base (Dict): a dictionary of base configuration options
|
|
|
|
"""
|
|
|
|
base, custom = (set(x.keys()) for x in (base, custom))
|
|
|
|
mismatched = [x for x in custom if x not in base]
|
|
|
|
if mismatched:
|
|
|
|
string = ''
|
|
|
|
for x in mismatched:
|
|
|
|
matches = get_close_matches(x, base)
|
|
|
|
match_str = f"Similar arguments are {matches}." if matches else ''
|
|
|
|
string += f"'{colorstr('red', 'bold', x)}' is not a valid YOLO argument. {match_str}\n"
|
|
|
|
raise SyntaxError(string + CLI_HELP_MSG) from e
|
|
|
|
|
|
|
|
|
|
|
|
def merge_equals_args(args: List[str]) -> List[str]:
|
|
|
|
"""
|
|
|
|
Merges arguments around isolated '=' args in a list of strings.
|
|
|
|
The function considers cases where the first argument ends with '=' or the second starts with '=',
|
|
|
|
as well as when the middle one is an equals sign.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
args (List[str]): A list of strings where each element is an argument.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List[str]: A list of strings where the arguments around isolated '=' are merged.
|
|
|
|
"""
|
|
|
|
new_args = []
|
|
|
|
for i, arg in enumerate(args):
|
|
|
|
if arg == '=' and 0 < i < len(args) - 1: # merge ['arg', '=', 'val']
|
|
|
|
new_args[-1] += f"={args[i + 1]}"
|
|
|
|
del args[i + 1]
|
|
|
|
elif arg.endswith('=') and i < len(args) - 1 and '=' not in args[i + 1]: # merge ['arg=', 'val']
|
|
|
|
new_args.append(f"{arg}{args[i + 1]}")
|
|
|
|
del args[i + 1]
|
|
|
|
elif arg.startswith('=') and i > 0: # merge ['arg', '=val']
|
|
|
|
new_args[-1] += arg
|
|
|
|
else:
|
|
|
|
new_args.append(arg)
|
|
|
|
return new_args
|
|
|
|
|
|
|
|
|
|
|
|
def entrypoint(debug=''):
|
|
|
|
"""
|
|
|
|
This function is the ultralytics package entrypoint, it's responsible for parsing the command line arguments passed
|
|
|
|
to the package.
|
|
|
|
|
|
|
|
This function allows for:
|
|
|
|
- passing mandatory YOLO args as a list of strings
|
|
|
|
- specifying the task to be performed, either 'detect', 'segment' or 'classify'
|
|
|
|
- specifying the mode, either 'train', 'val', 'test', or 'predict'
|
|
|
|
- running special modes like 'checks'
|
|
|
|
- passing overrides to the package's configuration
|
|
|
|
|
|
|
|
It uses the package's default cfg and initializes it using the passed overrides.
|
|
|
|
Then it calls the CLI function with the composed cfg
|
|
|
|
"""
|
|
|
|
args = (debug.split(' ') if debug else sys.argv)[1:]
|
|
|
|
if not args: # no arguments passed
|
|
|
|
LOGGER.info(CLI_HELP_MSG)
|
|
|
|
return
|
|
|
|
|
|
|
|
# Define tasks and modes
|
|
|
|
tasks = 'detect', 'segment', 'classify'
|
|
|
|
modes = 'train', 'val', 'predict', 'export'
|
|
|
|
|
|
|
|
# Define special commands
|
|
|
|
special = {
|
|
|
|
'help': lambda: LOGGER.info(CLI_HELP_MSG),
|
|
|
|
'checks': checks.check_yolo,
|
|
|
|
'version': lambda: LOGGER.info(__version__),
|
|
|
|
'settings': lambda: yaml_print(USER_CONFIG_DIR / 'settings.yaml'),
|
|
|
|
'cfg': lambda: yaml_print(DEFAULT_CFG_PATH),
|
|
|
|
'copy-cfg': copy_default_cfg}
|
|
|
|
full_args_dict = {**DEFAULT_CFG_DICT, **{k: None for k in tasks}, **{k: None for k in modes}, **special}
|
|
|
|
|
|
|
|
# Define common mis-uses of special commands, i.e. -h, -help, --help
|
|
|
|
special.update({k[0]: v for k, v in special.items()}) # singular
|
|
|
|
special.update({k[:-1]: v for k, v in special.items() if len(k) > 1 and k.endswith('s')}) # singular
|
|
|
|
special = {**special, **{f'-{k}': v for k, v in special.items()}, **{f'--{k}': v for k, v in special.items()}}
|
|
|
|
|
|
|
|
overrides = {} # basic overrides, i.e. imgsz=320
|
|
|
|
for a in merge_equals_args(args): # merge spaces around '=' sign
|
|
|
|
if '=' in a:
|
|
|
|
try:
|
|
|
|
re.sub(r' *= *', '=', a) # remove spaces around equals sign
|
|
|
|
k, v = a.split('=', 1) # split on first '=' sign
|
|
|
|
assert v, f"missing '{k}' value"
|
|
|
|
if k == 'cfg': # custom.yaml passed
|
|
|
|
LOGGER.info(f"Overriding {DEFAULT_CFG_PATH} with {v}")
|
|
|
|
overrides = {k: val for k, val in yaml_load(v).items() if k != 'cfg'}
|
|
|
|
else:
|
|
|
|
if v.lower() == 'none':
|
|
|
|
v = None
|
|
|
|
elif v.lower() == 'true':
|
|
|
|
v = True
|
|
|
|
elif v.lower() == 'false':
|
|
|
|
v = False
|
|
|
|
else:
|
|
|
|
with contextlib.suppress(Exception):
|
|
|
|
v = eval(v)
|
|
|
|
overrides[k] = v
|
|
|
|
except (NameError, SyntaxError, ValueError, AssertionError) as e:
|
|
|
|
check_cfg_mismatch(full_args_dict, {a: ""}, e)
|
|
|
|
|
|
|
|
elif a in tasks:
|
|
|
|
overrides['task'] = a
|
|
|
|
elif a in modes:
|
|
|
|
overrides['mode'] = a
|
|
|
|
elif a in special:
|
|
|
|
special[a]()
|
|
|
|
return
|
|
|
|
elif a in DEFAULT_CFG_DICT and isinstance(DEFAULT_CFG_DICT[a], bool):
|
|
|
|
overrides[a] = True # auto-True for default bool args, i.e. 'yolo show' sets show=True
|
|
|
|
elif a in DEFAULT_CFG_DICT:
|
|
|
|
raise SyntaxError(f"'{colorstr('red', 'bold', a)}' is a valid YOLO argument but is missing an '=' sign "
|
|
|
|
f"to set its value, i.e. try '{a}={DEFAULT_CFG_DICT[a]}'\n{CLI_HELP_MSG}")
|
|
|
|
else:
|
|
|
|
check_cfg_mismatch(full_args_dict, {a: ""})
|
|
|
|
|
|
|
|
# Defaults
|
|
|
|
task2model = dict(detect='yolov8n.pt', segment='yolov8n-seg.pt', classify='yolov8n-cls.pt')
|
|
|
|
task2data = dict(detect='coco128.yaml', segment='coco128-seg.yaml', classify='mnist160')
|
|
|
|
|
|
|
|
# Mode
|
|
|
|
mode = overrides.get('mode', None)
|
|
|
|
if mode is None:
|
|
|
|
mode = DEFAULT_CFG.mode or 'predict'
|
|
|
|
LOGGER.warning(f"WARNING ⚠️ 'mode' is missing. Valid modes are {modes}. Using default 'mode={mode}'.")
|
|
|
|
elif mode not in modes:
|
|
|
|
if mode != 'checks':
|
|
|
|
raise ValueError(f"Invalid 'mode={mode}'. Valid modes are {modes}.")
|
|
|
|
LOGGER.warning("WARNING ⚠️ 'yolo mode=checks' is deprecated. Use 'yolo checks' instead.")
|
|
|
|
checks.check_yolo()
|
|
|
|
return
|
|
|
|
|
|
|
|
# Model
|
|
|
|
model = overrides.pop('model', DEFAULT_CFG.model)
|
|
|
|
task = overrides.pop('task', None)
|
|
|
|
if model is None:
|
|
|
|
model = task2model.get(task, 'yolov8n.pt')
|
|
|
|
LOGGER.warning(f"WARNING ⚠️ 'model' is missing. Using default 'model={model}'.")
|
|
|
|
from ultralytics.yolo.engine.model import YOLO
|
|
|
|
overrides['model'] = model
|
|
|
|
model = YOLO(model)
|
|
|
|
|
|
|
|
# Task
|
|
|
|
if task and task != model.task:
|
|
|
|
LOGGER.warning(f"WARNING ⚠️ 'task={task}' conflicts with {model.task} model {overrides['model']}. "
|
|
|
|
f"Inheriting 'task={model.task}' from {overrides['model']} and ignoring 'task={task}'.")
|
|
|
|
task = model.task
|
|
|
|
overrides['task'] = task
|
|
|
|
if mode == 'predict' and 'source' not in overrides:
|
|
|
|
overrides['source'] = DEFAULT_CFG.source or ROOT / "assets" if (ROOT / "assets").exists() \
|
|
|
|
else "https://ultralytics.com/images/bus.jpg"
|
|
|
|
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using default 'source={overrides['source']}'.")
|
|
|
|
elif mode in ('train', 'val'):
|
|
|
|
if 'data' not in overrides:
|
|
|
|
overrides['data'] = task2data.get(task, DEFAULT_CFG.data)
|
|
|
|
LOGGER.warning(f"WARNING ⚠️ 'data' is missing. Using {model.task} default 'data={overrides['data']}'.")
|
|
|
|
elif mode == 'export':
|
|
|
|
if 'format' not in overrides:
|
|
|
|
overrides['format'] = DEFAULT_CFG.format or 'torchscript'
|
|
|
|
LOGGER.warning(f"WARNING ⚠️ 'format' is missing. Using default 'format={overrides['format']}'.")
|
|
|
|
|
|
|
|
# Run command in python
|
|
|
|
# getattr(model, mode)(**vars(get_cfg(overrides=overrides))) # default args using default.yaml
|
|
|
|
getattr(model, mode)(**overrides) # default args from model
|
|
|
|
|
|
|
|
|
|
|
|
# Special modes --------------------------------------------------------------------------------------------------------
|
|
|
|
def copy_default_cfg():
|
|
|
|
new_file = Path.cwd() / DEFAULT_CFG_PATH.name.replace('.yaml', '_copy.yaml')
|
|
|
|
shutil.copy2(DEFAULT_CFG_PATH, new_file)
|
|
|
|
LOGGER.info(f"{DEFAULT_CFG_PATH} copied to {new_file}\n"
|
|
|
|
f"Example YOLO command with this new custom cfg:\n yolo cfg='{new_file}' imgsz=320 batch=8")
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
# entrypoint(debug='yolo predict model=yolov8n.pt')
|
|
|
|
entrypoint(debug='')
|