|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from ultralytics.engine.predictor import BasePredictor
|
|
|
|
from ultralytics.engine.results import Results
|
|
|
|
from ultralytics.utils import ops
|
|
|
|
|
|
|
|
|
|
|
|
class DetectionPredictor(BasePredictor):
|
|
|
|
"""
|
|
|
|
A class extending the BasePredictor class for prediction based on a detection model.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
```python
|
|
|
|
from ultralytics.utils import ASSETS
|
|
|
|
from ultralytics.models.yolo.detect import DetectionPredictor
|
|
|
|
|
|
|
|
args = dict(model='yolov8n.pt', source=ASSETS)
|
|
|
|
predictor = DetectionPredictor(overrides=args)
|
|
|
|
predictor.predict_cli()
|
|
|
|
```
|
|
|
|
"""
|
|
|
|
|
|
|
|
def postprocess(self, preds, img, orig_imgs):
|
|
|
|
"""Post-processes predictions and returns a list of Results objects."""
|
|
|
|
preds = ops.non_max_suppression(preds,
|
|
|
|
self.args.conf,
|
|
|
|
self.args.iou,
|
|
|
|
agnostic=self.args.agnostic_nms,
|
|
|
|
max_det=self.args.max_det,
|
|
|
|
classes=self.args.classes)
|
|
|
|
|
|
|
|
results = []
|
|
|
|
for i, pred in enumerate(preds):
|
|
|
|
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
|
|
|
|
if not isinstance(orig_imgs, torch.Tensor):
|
|
|
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
|
|
|
|
path = self.batch[0]
|
|
|
|
img_path = path[i] if isinstance(path, list) else path
|
|
|
|
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred))
|
|
|
|
return results
|