|
|
|
import collections
|
|
|
|
import math
|
|
|
|
import random
|
|
|
|
from copy import deepcopy
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
import torchvision.transforms as T
|
|
|
|
|
|
|
|
from ..utils import LOGGER
|
|
|
|
from ..utils.checks import check_version
|
|
|
|
from ..utils.instance import Instances
|
|
|
|
from ..utils.loggers import colorstr
|
|
|
|
from ..utils.metrics import bbox_ioa
|
|
|
|
from ..utils.ops import segment2box
|
|
|
|
from .utils import IMAGENET_MEAN, IMAGENET_STD, polygons2masks, polygons2masks_overlap
|
|
|
|
|
|
|
|
|
|
|
|
# TODO: we might need a BaseTransform to make all these augments be compatible with both classification and semantic
|
|
|
|
class BaseTransform:
|
|
|
|
|
|
|
|
def __init__(self) -> None:
|
|
|
|
pass
|
|
|
|
|
|
|
|
def apply_image(self, labels):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def apply_instances(self, labels):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def apply_semantic(self, labels):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def __call__(self, labels):
|
|
|
|
self.apply_image(labels)
|
|
|
|
self.apply_instances(labels)
|
|
|
|
self.apply_semantic(labels)
|
|
|
|
|
|
|
|
|
|
|
|
class Compose:
|
|
|
|
|
|
|
|
def __init__(self, transforms):
|
|
|
|
self.transforms = transforms
|
|
|
|
|
|
|
|
def __call__(self, data):
|
|
|
|
for t in self.transforms:
|
|
|
|
data = t(data)
|
|
|
|
return data
|
|
|
|
|
|
|
|
def append(self, transform):
|
|
|
|
self.transforms.append(transform)
|
|
|
|
|
|
|
|
def tolist(self):
|
|
|
|
return self.transforms
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
format_string = f"{self.__class__.__name__}("
|
|
|
|
for t in self.transforms:
|
|
|
|
format_string += "\n"
|
|
|
|
format_string += f" {t}"
|
|
|
|
format_string += "\n)"
|
|
|
|
return format_string
|
|
|
|
|
|
|
|
|
|
|
|
class BaseMixTransform:
|
|
|
|
"""This implementation is from mmyolo"""
|
|
|
|
|
|
|
|
def __init__(self, pre_transform=None, p=0.0) -> None:
|
|
|
|
self.pre_transform = pre_transform
|
|
|
|
self.p = p
|
|
|
|
|
|
|
|
def __call__(self, labels):
|
|
|
|
if random.uniform(0, 1) > self.p:
|
|
|
|
return labels
|
|
|
|
|
|
|
|
assert "dataset" in labels
|
|
|
|
dataset = labels.pop("dataset")
|
|
|
|
|
|
|
|
# get index of one or three other images
|
|
|
|
indexes = self.get_indexes(dataset)
|
|
|
|
if not isinstance(indexes, collections.abc.Sequence):
|
|
|
|
indexes = [indexes]
|
|
|
|
|
|
|
|
# get images information will be used for Mosaic or MixUp
|
|
|
|
mix_labels = [deepcopy(dataset.get_label_info(index)) for index in indexes]
|
|
|
|
|
|
|
|
if self.pre_transform is not None:
|
|
|
|
for i, data in enumerate(mix_labels):
|
|
|
|
# pre_transform may also require dataset
|
|
|
|
data.update({"dataset": dataset})
|
|
|
|
# before Mosaic or MixUp need to go through
|
|
|
|
# the necessary pre_transform
|
|
|
|
_labels = self.pre_transform(data)
|
|
|
|
_labels.pop("dataset")
|
|
|
|
mix_labels[i] = _labels
|
|
|
|
labels["mix_labels"] = mix_labels
|
|
|
|
|
|
|
|
# Mosaic or MixUp
|
|
|
|
labels = self._mix_transform(labels)
|
|
|
|
|
|
|
|
if "mix_labels" in labels:
|
|
|
|
labels.pop("mix_labels")
|
|
|
|
labels["dataset"] = dataset
|
|
|
|
|
|
|
|
return labels
|
|
|
|
|
|
|
|
def _mix_transform(self, labels):
|
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
def get_indexes(self, dataset):
|
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
|
|
|
|
class Mosaic(BaseMixTransform):
|
|
|
|
"""Mosaic augmentation.
|
|
|
|
Args:
|
|
|
|
img_size (Sequence[int]): Image size after mosaic pipeline of single
|
|
|
|
image. The shape order should be (height, width).
|
|
|
|
Default to (640, 640).
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, img_size=640, p=1.0, border=(0, 0)):
|
|
|
|
assert 0 <= p <= 1.0, "The probability should be in range [0, 1]. " f"got {p}."
|
|
|
|
super().__init__(pre_transform=None, p=p)
|
|
|
|
self.img_size = img_size
|
|
|
|
self.border = border
|
|
|
|
|
|
|
|
def get_indexes(self, dataset):
|
|
|
|
return [random.randint(0, len(dataset)) for _ in range(3)]
|
|
|
|
|
|
|
|
def _mix_transform(self, labels):
|
|
|
|
mosaic_labels = []
|
|
|
|
assert labels.get("rect_shape", None) is None, "rect and mosaic is exclusive."
|
|
|
|
assert len(labels.get("mix_labels", [])) > 0, "There are no other images for mosaic augment."
|
|
|
|
s = self.img_size
|
|
|
|
yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.border) # mosaic center x, y
|
|
|
|
mix_labels = labels["mix_labels"]
|
|
|
|
for i in range(4):
|
|
|
|
labels_patch = deepcopy(labels) if i == 0 else deepcopy(mix_labels[i - 1])
|
|
|
|
# Load image
|
|
|
|
img = labels_patch["img"]
|
|
|
|
h, w = labels_patch["resized_shape"]
|
|
|
|
|
|
|
|
# place img in img4
|
|
|
|
if i == 0: # top left
|
|
|
|
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
|
|
|
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
|
|
|
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
|
|
|
|
elif i == 1: # top right
|
|
|
|
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
|
|
|
|
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
|
|
|
|
elif i == 2: # bottom left
|
|
|
|
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
|
|
|
|
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
|
|
|
|
elif i == 3: # bottom right
|
|
|
|
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
|
|
|
|
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
|
|
|
|
|
|
|
|
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
|
|
|
|
padw = x1a - x1b
|
|
|
|
padh = y1a - y1b
|
|
|
|
|
|
|
|
labels_patch = self._update_labels(labels_patch, padw, padh)
|
|
|
|
mosaic_labels.append(labels_patch)
|
|
|
|
final_labels = self._cat_labels(mosaic_labels)
|
|
|
|
final_labels["img"] = img4
|
|
|
|
return final_labels
|
|
|
|
|
|
|
|
def _update_labels(self, labels, padw, padh):
|
|
|
|
"""Update labels"""
|
|
|
|
nh, nw = labels["img"].shape[:2]
|
|
|
|
labels["instances"].convert_bbox(format="xyxy")
|
|
|
|
labels["instances"].denormalize(nw, nh)
|
|
|
|
labels["instances"].add_padding(padw, padh)
|
|
|
|
return labels
|
|
|
|
|
|
|
|
def _cat_labels(self, mosaic_labels):
|
|
|
|
if len(mosaic_labels) == 0:
|
|
|
|
return {}
|
|
|
|
cls = []
|
|
|
|
instances = []
|
|
|
|
for labels in mosaic_labels:
|
|
|
|
cls.append(labels["cls"])
|
|
|
|
instances.append(labels["instances"])
|
|
|
|
final_labels = {
|
|
|
|
"ori_shape": (self.img_size * 2, self.img_size * 2),
|
|
|
|
"resized_shape": (self.img_size * 2, self.img_size * 2),
|
|
|
|
"im_file": mosaic_labels[0]["im_file"],
|
|
|
|
"cls": np.concatenate(cls, 0)}
|
|
|
|
|
|
|
|
final_labels["instances"] = Instances.concatenate(instances, axis=0)
|
|
|
|
final_labels["instances"].clip(self.img_size * 2, self.img_size * 2)
|
|
|
|
return final_labels
|
|
|
|
|
|
|
|
|
|
|
|
class MixUp(BaseMixTransform):
|
|
|
|
|
|
|
|
def __init__(self, pre_transform=None, p=0.0) -> None:
|
|
|
|
super().__init__(pre_transform=pre_transform, p=p)
|
|
|
|
|
|
|
|
def get_indexes(self, dataset):
|
|
|
|
return random.randint(0, len(dataset))
|
|
|
|
|
|
|
|
def _mix_transform(self, labels):
|
|
|
|
im = labels["img"]
|
|
|
|
labels2 = labels["mix_labels"][0]
|
|
|
|
im2 = labels2["img"]
|
|
|
|
cls2 = labels2["cls"]
|
|
|
|
# Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
|
|
|
|
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
|
|
|
|
im = (im * r + im2 * (1 - r)).astype(np.uint8)
|
|
|
|
cat_instances = Instances.concatenate([labels["instances"], labels2["instances"]], axis=0)
|
|
|
|
cls = labels["cls"]
|
|
|
|
labels["img"] = im
|
|
|
|
labels["instances"] = cat_instances
|
|
|
|
labels["cls"] = np.concatenate([cls, cls2], 0)
|
|
|
|
return labels
|
|
|
|
|
|
|
|
|
|
|
|
class RandomPerspective:
|
|
|
|
|
|
|
|
def __init__(self, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, border=(0, 0)):
|
|
|
|
self.degrees = degrees
|
|
|
|
self.translate = translate
|
|
|
|
self.scale = scale
|
|
|
|
self.shear = shear
|
|
|
|
self.perspective = perspective
|
|
|
|
# mosaic border
|
|
|
|
self.border = border
|
|
|
|
|
|
|
|
def affine_transform(self, img):
|
|
|
|
# Center
|
|
|
|
C = np.eye(3)
|
|
|
|
|
|
|
|
C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
|
|
|
|
C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
|
|
|
|
|
|
|
|
# Perspective
|
|
|
|
P = np.eye(3)
|
|
|
|
P[2, 0] = random.uniform(-self.perspective, self.perspective) # x perspective (about y)
|
|
|
|
P[2, 1] = random.uniform(-self.perspective, self.perspective) # y perspective (about x)
|
|
|
|
|
|
|
|
# Rotation and Scale
|
|
|
|
R = np.eye(3)
|
|
|
|
a = random.uniform(-self.degrees, self.degrees)
|
|
|
|
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
|
|
|
|
s = random.uniform(1 - self.scale, 1 + self.scale)
|
|
|
|
# s = 2 ** random.uniform(-scale, scale)
|
|
|
|
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
|
|
|
|
|
|
|
|
# Shear
|
|
|
|
S = np.eye(3)
|
|
|
|
S[0, 1] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) # x shear (deg)
|
|
|
|
S[1, 0] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) # y shear (deg)
|
|
|
|
|
|
|
|
# Translation
|
|
|
|
T = np.eye(3)
|
|
|
|
T[0, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[0] # x translation (pixels)
|
|
|
|
T[1, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[1] # y translation (pixels)
|
|
|
|
|
|
|
|
# Combined rotation matrix
|
|
|
|
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
|
|
|
|
# affine image
|
|
|
|
if (self.border[0] != 0) or (self.border[1] != 0) or (M != np.eye(3)).any(): # image changed
|
|
|
|
if self.perspective:
|
|
|
|
img = cv2.warpPerspective(img, M, dsize=self.size, borderValue=(114, 114, 114))
|
|
|
|
else: # affine
|
|
|
|
img = cv2.warpAffine(img, M[:2], dsize=self.size, borderValue=(114, 114, 114))
|
|
|
|
return img, M, s
|
|
|
|
|
|
|
|
def apply_bboxes(self, bboxes, M):
|
|
|
|
"""apply affine to bboxes only.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
bboxes(ndarray): list of bboxes, xyxy format, with shape (num_bboxes, 4).
|
|
|
|
M(ndarray): affine matrix.
|
|
|
|
Returns:
|
|
|
|
new_bboxes(ndarray): bboxes after affine, [num_bboxes, 4].
|
|
|
|
"""
|
|
|
|
n = len(bboxes)
|
|
|
|
if n == 0:
|
|
|
|
return bboxes
|
|
|
|
|
|
|
|
xy = np.ones((n * 4, 3))
|
|
|
|
xy[:, :2] = bboxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
|
|
|
|
xy = xy @ M.T # transform
|
|
|
|
xy = (xy[:, :2] / xy[:, 2:3] if self.perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
|
|
|
|
|
|
|
|
# create new boxes
|
|
|
|
x = xy[:, [0, 2, 4, 6]]
|
|
|
|
y = xy[:, [1, 3, 5, 7]]
|
|
|
|
return np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
|
|
|
|
|
|
|
|
def apply_segments(self, segments, M):
|
|
|
|
"""apply affine to segments and generate new bboxes from segments.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
segments(ndarray): list of segments, [num_samples, 500, 2].
|
|
|
|
M(ndarray): affine matrix.
|
|
|
|
Returns:
|
|
|
|
new_segments(ndarray): list of segments after affine, [num_samples, 500, 2].
|
|
|
|
new_bboxes(ndarray): bboxes after affine, [N, 4].
|
|
|
|
"""
|
|
|
|
n, num = segments.shape[:2]
|
|
|
|
if n == 0:
|
|
|
|
return [], segments
|
|
|
|
|
|
|
|
xy = np.ones((n * num, 3))
|
|
|
|
segments = segments.reshape(-1, 2)
|
|
|
|
xy[:, :2] = segments
|
|
|
|
xy = xy @ M.T # transform
|
|
|
|
xy = xy[:, :2] / xy[:, 2:3]
|
|
|
|
segments = xy.reshape(n, -1, 2)
|
|
|
|
bboxes = np.stack([segment2box(xy, self.size[0], self.size[1]) for xy in segments], 0)
|
|
|
|
return bboxes, segments
|
|
|
|
|
|
|
|
def apply_keypoints(self, keypoints, M):
|
|
|
|
"""apply affine to keypoints.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
keypoints(ndarray): keypoints, [N, 17, 2].
|
|
|
|
M(ndarray): affine matrix.
|
|
|
|
Return:
|
|
|
|
new_keypoints(ndarray): keypoints after affine, [N, 17, 2].
|
|
|
|
"""
|
|
|
|
n = len(keypoints)
|
|
|
|
if n == 0:
|
|
|
|
return keypoints
|
|
|
|
new_keypoints = np.ones((n * 17, 3))
|
|
|
|
new_keypoints[:, :2] = keypoints.reshape(n * 17, 2) # num_kpt is hardcoded to 17
|
|
|
|
new_keypoints = new_keypoints @ M.T # transform
|
|
|
|
new_keypoints = (new_keypoints[:, :2] / new_keypoints[:, 2:3]).reshape(n, 34) # perspective rescale or affine
|
|
|
|
new_keypoints[keypoints.reshape(-1, 34) == 0] = 0
|
|
|
|
x_kpts = new_keypoints[:, list(range(0, 34, 2))]
|
|
|
|
y_kpts = new_keypoints[:, list(range(1, 34, 2))]
|
|
|
|
|
|
|
|
x_kpts[np.logical_or.reduce((x_kpts < 0, x_kpts > self.size[0], y_kpts < 0, y_kpts > self.size[1]))] = 0
|
|
|
|
y_kpts[np.logical_or.reduce((x_kpts < 0, x_kpts > self.size[0], y_kpts < 0, y_kpts > self.size[1]))] = 0
|
|
|
|
new_keypoints[:, list(range(0, 34, 2))] = x_kpts
|
|
|
|
new_keypoints[:, list(range(1, 34, 2))] = y_kpts
|
|
|
|
return new_keypoints.reshape(n, 17, 2)
|
|
|
|
|
|
|
|
def __call__(self, labels):
|
|
|
|
"""
|
|
|
|
Affine images and targets.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
img(ndarray): image.
|
|
|
|
labels(Dict): a dict of `bboxes`, `segments`, `keypoints`.
|
|
|
|
"""
|
|
|
|
img = labels["img"]
|
|
|
|
cls = labels["cls"]
|
|
|
|
instances = labels["instances"]
|
|
|
|
# make sure the coord formats are right
|
|
|
|
instances.convert_bbox(format="xyxy")
|
|
|
|
instances.denormalize(*img.shape[:2][::-1])
|
|
|
|
|
|
|
|
self.size = img.shape[1] + self.border[1] * 2, img.shape[0] + self.border[0] * 2 # w, h
|
|
|
|
# M is affine matrix
|
|
|
|
# scale for func:`box_candidates`
|
|
|
|
img, M, scale = self.affine_transform(img)
|
|
|
|
|
|
|
|
bboxes = self.apply_bboxes(instances.bboxes, M)
|
|
|
|
|
|
|
|
segments = instances.segments
|
|
|
|
keypoints = instances.keypoints
|
|
|
|
# update bboxes if there are segments.
|
|
|
|
if segments is not None:
|
|
|
|
bboxes, segments = self.apply_segments(segments, M)
|
|
|
|
|
|
|
|
if keypoints is not None:
|
|
|
|
keypoints = self.apply_keypoints(keypoints, M)
|
|
|
|
new_instances = Instances(bboxes, segments, keypoints, bbox_format="xyxy", normalized=False)
|
|
|
|
new_instances.clip(*self.size)
|
|
|
|
|
|
|
|
# filter instances
|
|
|
|
instances.scale(scale_w=scale, scale_h=scale, bbox_only=True)
|
|
|
|
# make the bboxes have the same scale with new_bboxes
|
|
|
|
i = self.box_candidates(box1=instances.bboxes.T,
|
|
|
|
box2=new_instances.bboxes.T,
|
|
|
|
area_thr=0.01 if segments is not None else 0.10)
|
|
|
|
labels["instances"] = new_instances[i]
|
|
|
|
# clip
|
|
|
|
labels["cls"] = cls[i]
|
|
|
|
labels["img"] = img
|
|
|
|
return labels
|
|
|
|
|
|
|
|
def box_candidates(self, box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
|
|
|
|
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
|
|
|
|
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
|
|
|
|
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
|
|
|
|
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
|
|
|
|
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
|
|
|
|
|
|
|
|
|
|
|
|
class RandomHSV:
|
|
|
|
|
|
|
|
def __init__(self, hgain=0.5, sgain=0.5, vgain=0.5) -> None:
|
|
|
|
self.hgain = hgain
|
|
|
|
self.sgain = sgain
|
|
|
|
self.vgain = vgain
|
|
|
|
|
|
|
|
def __call__(self, labels):
|
|
|
|
img = labels["img"]
|
|
|
|
if self.hgain or self.sgain or self.vgain:
|
|
|
|
r = np.random.uniform(-1, 1, 3) * [self.hgain, self.sgain, self.vgain] + 1 # random gains
|
|
|
|
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
|
|
|
|
dtype = img.dtype # uint8
|
|
|
|
|
|
|
|
x = np.arange(0, 256, dtype=r.dtype)
|
|
|
|
lut_hue = ((x * r[0]) % 180).astype(dtype)
|
|
|
|
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
|
|
|
|
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
|
|
|
|
|
|
|
|
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
|
|
|
|
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
|
|
|
|
labels["img"] = img
|
|
|
|
return labels
|
|
|
|
|
|
|
|
|
|
|
|
class RandomFlip:
|
|
|
|
|
|
|
|
def __init__(self, p=0.5, direction="horizontal") -> None:
|
|
|
|
assert direction in ["horizontal", "vertical"], f"Support direction `horizontal` or `vertical`, got {direction}"
|
|
|
|
assert 0 <= p <= 1.0
|
|
|
|
|
|
|
|
self.p = p
|
|
|
|
self.direction = direction
|
|
|
|
|
|
|
|
def __call__(self, labels):
|
|
|
|
img = labels["img"]
|
|
|
|
instances = labels["instances"]
|
|
|
|
instances.convert_bbox(format="xywh")
|
|
|
|
h, w = img.shape[:2]
|
|
|
|
h = 1 if instances.normalized else h
|
|
|
|
w = 1 if instances.normalized else w
|
|
|
|
|
|
|
|
# Flip up-down
|
|
|
|
if self.direction == "vertical" and random.random() < self.p:
|
|
|
|
img = np.flipud(img)
|
|
|
|
img = np.ascontiguousarray(img)
|
|
|
|
instances.flipud(h)
|
|
|
|
if self.direction == "horizontal" and random.random() < self.p:
|
|
|
|
img = np.fliplr(img)
|
|
|
|
img = np.ascontiguousarray(img)
|
|
|
|
instances.fliplr(w)
|
|
|
|
labels["img"] = img
|
|
|
|
labels["instances"] = instances
|
|
|
|
return labels
|
|
|
|
|
|
|
|
|
|
|
|
class LetterBox:
|
|
|
|
"""Resize image and padding for detection, instance segmentation, pose"""
|
|
|
|
|
|
|
|
def __init__(self, new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, stride=32):
|
|
|
|
self.new_shape = new_shape
|
|
|
|
self.auto = auto
|
|
|
|
self.scaleFill = scaleFill
|
|
|
|
self.scaleup = scaleup
|
|
|
|
self.stride = stride
|
|
|
|
|
|
|
|
def __call__(self, labels={}, image=None):
|
|
|
|
img = image or labels["img"]
|
|
|
|
shape = img.shape[:2] # current shape [height, width]
|
|
|
|
new_shape = labels.get("rect_shape", self.new_shape)
|
|
|
|
if isinstance(new_shape, int):
|
|
|
|
new_shape = (new_shape, new_shape)
|
|
|
|
|
|
|
|
# Scale ratio (new / old)
|
|
|
|
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
|
|
|
if not self.scaleup: # only scale down, do not scale up (for better val mAP)
|
|
|
|
r = min(r, 1.0)
|
|
|
|
|
|
|
|
# Compute padding
|
|
|
|
ratio = r, r # width, height ratios
|
|
|
|
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
|
|
|
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
|
|
|
if self.auto: # minimum rectangle
|
|
|
|
dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride) # wh padding
|
|
|
|
elif self.scaleFill: # stretch
|
|
|
|
dw, dh = 0.0, 0.0
|
|
|
|
new_unpad = (new_shape[1], new_shape[0])
|
|
|
|
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
|
|
|
|
|
|
|
dw /= 2 # divide padding into 2 sides
|
|
|
|
dh /= 2
|
|
|
|
|
|
|
|
if shape[::-1] != new_unpad: # resize
|
|
|
|
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
|
|
|
|
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
|
|
|
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
|
|
|
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT,
|
|
|
|
value=(114, 114, 114)) # add border
|
|
|
|
|
|
|
|
labels = self._update_labels(labels, ratio, dw, dh)
|
|
|
|
labels["img"] = img
|
|
|
|
return labels
|
|
|
|
|
|
|
|
def _update_labels(self, labels, ratio, padw, padh):
|
|
|
|
"""Update labels"""
|
|
|
|
labels["instances"].convert_bbox(format="xyxy")
|
|
|
|
labels["instances"].denormalize(*labels["img"].shape[:2][::-1])
|
|
|
|
labels["instances"].scale(*ratio)
|
|
|
|
labels["instances"].add_padding(padw, padh)
|
|
|
|
return labels
|
|
|
|
|
|
|
|
|
|
|
|
class CopyPaste:
|
|
|
|
|
|
|
|
def __init__(self, p=0.5) -> None:
|
|
|
|
self.p = p
|
|
|
|
|
|
|
|
def __call__(self, labels):
|
|
|
|
# Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
|
|
|
|
im = labels["img"]
|
|
|
|
cls = labels["cls"]
|
|
|
|
bboxes = labels["instances"].bboxes
|
|
|
|
segments = labels["instances"].segments # n, 1000, 2
|
|
|
|
keypoints = labels["instances"].keypoints
|
|
|
|
if self.p and segments is not None:
|
|
|
|
n = len(segments)
|
|
|
|
h, w, _ = im.shape # height, width, channels
|
|
|
|
im_new = np.zeros(im.shape, np.uint8)
|
|
|
|
# TODO: this implement can be parallel since segments are ndarray, also might work with Instances inside
|
|
|
|
for j in random.sample(range(n), k=round(self.p * n)):
|
|
|
|
c, b, s = cls[j], bboxes[j], segments[j]
|
|
|
|
box = w - b[2], b[1], w - b[0], b[3]
|
|
|
|
ioa = bbox_ioa(box, bboxes) # intersection over area
|
|
|
|
if (ioa < 0.30).all(): # allow 30% obscuration of existing labels
|
|
|
|
bboxes = np.concatenate((bboxes, [box]), 0)
|
|
|
|
cls = np.concatenate((cls, c[None]), axis=0)
|
|
|
|
segments = np.concatenate((segments, np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1)[None]), 0)
|
|
|
|
if keypoints is not None:
|
|
|
|
keypoints = np.concatenate(
|
|
|
|
(keypoints, np.concatenate((w - keypoints[j][:, 0:1], keypoints[j][:, 1:2]), 1)), 0)
|
|
|
|
cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
|
|
|
|
|
|
|
|
result = cv2.bitwise_and(src1=im, src2=im_new)
|
|
|
|
result = cv2.flip(result, 1) # augment segments (flip left-right)
|
|
|
|
i = result > 0 # pixels to replace
|
|
|
|
# i[:, :] = result.max(2).reshape(h, w, 1) # act over ch
|
|
|
|
im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug
|
|
|
|
labels["img"] = im
|
|
|
|
labels["cls"] = cls
|
|
|
|
labels["instances"].update(bboxes, segments, keypoints)
|
|
|
|
return labels
|
|
|
|
|
|
|
|
|
|
|
|
class Albumentations:
|
|
|
|
# YOLOv5 Albumentations class (optional, only used if package is installed)
|
|
|
|
def __init__(self, p=1.0):
|
|
|
|
self.p = p
|
|
|
|
self.transform = None
|
|
|
|
prefix = colorstr("albumentations: ")
|
|
|
|
try:
|
|
|
|
import albumentations as A
|
|
|
|
|
|
|
|
check_version(A.__version__, "1.0.3", hard=True) # version requirement
|
|
|
|
|
|
|
|
T = [
|
|
|
|
A.Blur(p=0.01),
|
|
|
|
A.MedianBlur(p=0.01),
|
|
|
|
A.ToGray(p=0.01),
|
|
|
|
A.CLAHE(p=0.01),
|
|
|
|
A.RandomBrightnessContrast(p=0.0),
|
|
|
|
A.RandomGamma(p=0.0),
|
|
|
|
A.ImageCompression(quality_lower=75, p=0.0),] # transforms
|
|
|
|
self.transform = A.Compose(T, bbox_params=A.BboxParams(format="yolo", label_fields=["class_labels"]))
|
|
|
|
|
|
|
|
LOGGER.info(prefix + ", ".join(f"{x}".replace("always_apply=False, ", "") for x in T if x.p))
|
|
|
|
except ImportError: # package not installed, skip
|
|
|
|
pass
|
|
|
|
except Exception as e:
|
|
|
|
LOGGER.info(f"{prefix}{e}")
|
|
|
|
|
|
|
|
def __call__(self, labels):
|
|
|
|
im = labels["img"]
|
|
|
|
cls = labels["cls"]
|
|
|
|
if len(cls):
|
|
|
|
labels["instances"].convert_bbox("xywh")
|
|
|
|
labels["instances"].normalize(*im.shape[:2][::-1])
|
|
|
|
bboxes = labels["instances"].bboxes
|
|
|
|
# TODO: add supports of segments and keypoints
|
|
|
|
if self.transform and random.random() < self.p:
|
|
|
|
new = self.transform(image=im, bboxes=bboxes, class_labels=cls) # transformed
|
|
|
|
labels["img"] = new["image"]
|
|
|
|
labels["cls"] = np.array(new["class_labels"])
|
|
|
|
labels["instances"].update(bboxes=bboxes)
|
|
|
|
return labels
|
|
|
|
|
|
|
|
|
|
|
|
# TODO: technically this is not an augmentation, maybe we should put this to another files
|
|
|
|
class Format:
|
|
|
|
|
|
|
|
def __init__(self, bbox_format="xywh", normalize=True, mask=False, mask_ratio=4, mask_overlap=True, batch_idx=True):
|
|
|
|
self.bbox_format = bbox_format
|
|
|
|
self.normalize = normalize
|
|
|
|
self.mask = mask # set False when training detection only
|
|
|
|
self.mask_ratio = mask_ratio
|
|
|
|
self.mask_overlap = mask_overlap
|
|
|
|
self.batch_idx = batch_idx # keep the batch indexes
|
|
|
|
|
|
|
|
def __call__(self, labels):
|
|
|
|
img = labels["img"]
|
|
|
|
h, w = img.shape[:2]
|
|
|
|
cls = labels.pop("cls")
|
|
|
|
instances = labels.pop("instances")
|
|
|
|
instances.convert_bbox(format=self.bbox_format)
|
|
|
|
instances.denormalize(w, h)
|
|
|
|
nl = len(instances)
|
|
|
|
|
|
|
|
if instances.segments is not None and self.mask:
|
|
|
|
masks, instances, cls = self._format_segments(instances, cls, w, h)
|
|
|
|
labels["masks"] = (torch.from_numpy(masks) if nl else torch.zeros(
|
|
|
|
1 if self.mask_overlap else nl, img.shape[0] // self.mask_ratio, img.shape[1] // self.mask_ratio))
|
|
|
|
if self.normalize:
|
|
|
|
instances.normalize(w, h)
|
|
|
|
labels["img"] = self._format_img(img)
|
|
|
|
labels["cls"] = torch.from_numpy(cls) if nl else torch.zeros(nl)
|
|
|
|
labels["bboxes"] = torch.from_numpy(instances.bboxes) if nl else torch.zeros((nl, 4))
|
|
|
|
if instances.keypoints is not None:
|
|
|
|
labels["keypoints"] = torch.from_numpy(instances.keypoints) if nl else torch.zeros((nl, 17, 2))
|
|
|
|
# then we can use collate_fn
|
|
|
|
if self.batch_idx:
|
|
|
|
labels["batch_idx"] = torch.zeros(nl)
|
|
|
|
return labels
|
|
|
|
|
|
|
|
def _format_img(self, img):
|
|
|
|
if len(img.shape) < 3:
|
|
|
|
img = np.expand_dims(img, -1)
|
|
|
|
img = np.ascontiguousarray(img.transpose(2, 0, 1))
|
|
|
|
img = torch.from_numpy(img)
|
|
|
|
return img
|
|
|
|
|
|
|
|
def _format_segments(self, instances, cls, w, h):
|
|
|
|
"""convert polygon points to bitmap"""
|
|
|
|
segments = instances.segments
|
|
|
|
if self.mask_overlap:
|
|
|
|
masks, sorted_idx = polygons2masks_overlap((h, w), segments, downsample_ratio=self.mask_ratio)
|
|
|
|
masks = masks[None] # (640, 640) -> (1, 640, 640)
|
|
|
|
instances = instances[sorted_idx]
|
|
|
|
cls = cls[sorted_idx]
|
|
|
|
else:
|
|
|
|
masks = polygons2masks((h, w), segments, color=1, downsample_ratio=self.mask_ratio)
|
|
|
|
|
|
|
|
return masks, instances, cls
|
|
|
|
|
|
|
|
|
|
|
|
def mosaic_transforms(img_size, hyp):
|
|
|
|
pre_transform = Compose([
|
|
|
|
Mosaic(img_size=img_size, p=hyp.mosaic, border=[-img_size // 2, -img_size // 2]),
|
|
|
|
CopyPaste(p=hyp.copy_paste),
|
|
|
|
RandomPerspective(
|
|
|
|
degrees=hyp.degrees,
|
|
|
|
translate=hyp.translate,
|
|
|
|
scale=hyp.scale,
|
|
|
|
shear=hyp.shear,
|
|
|
|
perspective=hyp.perspective,
|
|
|
|
border=[-img_size // 2, -img_size // 2],
|
|
|
|
),])
|
|
|
|
transforms = Compose([
|
|
|
|
pre_transform,
|
|
|
|
MixUp(
|
|
|
|
pre_transform=pre_transform,
|
|
|
|
p=hyp.mixup,
|
|
|
|
),
|
|
|
|
Albumentations(p=1.0),
|
|
|
|
RandomHSV(hgain=hyp.hsv_h, sgain=hyp.hsv_s, vgain=hyp.hsv_v),
|
|
|
|
RandomFlip(direction="vertical", p=hyp.flipud),
|
|
|
|
RandomFlip(direction="horizontal", p=hyp.fliplr),])
|
|
|
|
return transforms
|
|
|
|
|
|
|
|
|
|
|
|
def affine_transforms(img_size, hyp):
|
|
|
|
# rect, randomperspective, albumentation, hsv, flipud, fliplr
|
|
|
|
transforms = Compose([
|
|
|
|
LetterBox(new_shape=(img_size, img_size)),
|
|
|
|
RandomPerspective(
|
|
|
|
degrees=hyp.degrees,
|
|
|
|
translate=hyp.translate,
|
|
|
|
scale=hyp.scale,
|
|
|
|
shear=hyp.shear,
|
|
|
|
perspective=hyp.perspective,
|
|
|
|
border=[0, 0],
|
|
|
|
),
|
|
|
|
Albumentations(p=1.0),
|
|
|
|
RandomHSV(hgain=hyp.hsv_h, sgain=hyp.hsv_s, vgain=hyp.hsv_v),
|
|
|
|
RandomFlip(direction="vertical", p=hyp.flipud),
|
|
|
|
RandomFlip(direction="horizontal", p=hyp.fliplr),])
|
|
|
|
return transforms
|
|
|
|
|
|
|
|
|
|
|
|
# Classification augmentations -------------------------------------------------------------------------------------------
|
|
|
|
def classify_transforms(size=224):
|
|
|
|
# Transforms to apply if albumentations not installed
|
|
|
|
assert isinstance(size, int), f"ERROR: classify_transforms size {size} must be integer, not (list, tuple)"
|
|
|
|
# T.Compose([T.ToTensor(), T.Resize(size), T.CenterCrop(size), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
|
|
|
|
return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
|
|
|
|
|
|
|
|
|
|
|
|
def classify_albumentations(
|
|
|
|
augment=True,
|
|
|
|
size=224,
|
|
|
|
scale=(0.08, 1.0),
|
|
|
|
hflip=0.5,
|
|
|
|
vflip=0.0,
|
|
|
|
jitter=0.4,
|
|
|
|
mean=IMAGENET_MEAN,
|
|
|
|
std=IMAGENET_STD,
|
|
|
|
auto_aug=False,
|
|
|
|
):
|
|
|
|
# YOLOv5 classification Albumentations (optional, only used if package is installed)
|
|
|
|
prefix = colorstr("albumentations: ")
|
|
|
|
try:
|
|
|
|
import albumentations as A
|
|
|
|
from albumentations.pytorch import ToTensorV2
|
|
|
|
|
|
|
|
check_version(A.__version__, "1.0.3", hard=True) # version requirement
|
|
|
|
if augment: # Resize and crop
|
|
|
|
T = [A.RandomResizedCrop(height=size, width=size, scale=scale)]
|
|
|
|
if auto_aug:
|
|
|
|
# TODO: implement AugMix, AutoAug & RandAug in albumentation
|
|
|
|
LOGGER.info(f"{prefix}auto augmentations are currently not supported")
|
|
|
|
else:
|
|
|
|
if hflip > 0:
|
|
|
|
T += [A.HorizontalFlip(p=hflip)]
|
|
|
|
if vflip > 0:
|
|
|
|
T += [A.VerticalFlip(p=vflip)]
|
|
|
|
if jitter > 0:
|
|
|
|
color_jitter = (float(jitter),) * 3 # repeat value for brightness, contrast, saturation, 0 hue
|
|
|
|
T += [A.ColorJitter(*color_jitter, 0)]
|
|
|
|
else: # Use fixed crop for eval set (reproducibility)
|
|
|
|
T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)]
|
|
|
|
T += [A.Normalize(mean=mean, std=std), ToTensorV2()] # Normalize and convert to Tensor
|
|
|
|
LOGGER.info(prefix + ", ".join(f"{x}".replace("always_apply=False, ", "") for x in T if x.p))
|
|
|
|
return A.Compose(T)
|
|
|
|
|
|
|
|
except ImportError: # package not installed, skip
|
|
|
|
pass
|
|
|
|
except Exception as e:
|
|
|
|
LOGGER.info(f"{prefix}{e}")
|
|
|
|
|
|
|
|
|
|
|
|
class ClassifyLetterBox:
|
|
|
|
# YOLOv5 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])
|
|
|
|
def __init__(self, size=(640, 640), auto=False, stride=32):
|
|
|
|
super().__init__()
|
|
|
|
self.h, self.w = (size, size) if isinstance(size, int) else size
|
|
|
|
self.auto = auto # pass max size integer, automatically solve for short side using stride
|
|
|
|
self.stride = stride # used with auto
|
|
|
|
|
|
|
|
def __call__(self, im): # im = np.array HWC
|
|
|
|
imh, imw = im.shape[:2]
|
|
|
|
r = min(self.h / imh, self.w / imw) # ratio of new/old
|
|
|
|
h, w = round(imh * r), round(imw * r) # resized image
|
|
|
|
hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else self.h, self.w
|
|
|
|
top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1)
|
|
|
|
im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype)
|
|
|
|
im_out[top:top + h, left:left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)
|
|
|
|
return im_out
|
|
|
|
|
|
|
|
|
|
|
|
class CenterCrop:
|
|
|
|
# YOLOv5 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()])
|
|
|
|
def __init__(self, size=640):
|
|
|
|
super().__init__()
|
|
|
|
self.h, self.w = (size, size) if isinstance(size, int) else size
|
|
|
|
|
|
|
|
def __call__(self, im): # im = np.array HWC
|
|
|
|
imh, imw = im.shape[:2]
|
|
|
|
m = min(imh, imw) # min dimension
|
|
|
|
top, left = (imh - m) // 2, (imw - m) // 2
|
|
|
|
return cv2.resize(im[top:top + m, left:left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR)
|
|
|
|
|
|
|
|
|
|
|
|
class ToTensor:
|
|
|
|
# YOLOv5 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])
|
|
|
|
def __init__(self, half=False):
|
|
|
|
super().__init__()
|
|
|
|
self.half = half
|
|
|
|
|
|
|
|
def __call__(self, im): # im = np.array HWC in BGR order
|
|
|
|
im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous
|
|
|
|
im = torch.from_numpy(im) # to torch
|
|
|
|
im = im.half() if self.half else im.float() # uint8 to fp16/32
|
|
|
|
im /= 255.0 # 0-255 to 0.0-1.0
|
|
|
|
return im
|