You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

152 lines
6.4 KiB

# Ultralytics YOLO 🚀, AGPL-3.0 license
from pathlib import Path
import cv2
import numpy as np
import torch
from ultralytics.yolo.data import YOLODataset
from ultralytics.yolo.data.augment import Compose, Format, v8_transforms
from ultralytics.yolo.utils import colorstr, ops
from ultralytics.yolo.v8.detect import DetectionValidator
__all__ = 'RTDETRValidator', # tuple or list
# TODO: Temporarily, RT-DETR does not need padding.
class RTDETRDataset(YOLODataset):
def __init__(self, *args, data=None, **kwargs):
super().__init__(*args, data=data, use_segments=False, use_keypoints=False, **kwargs)
# NOTE: add stretch version load_image for rtdetr mosaic
def load_image(self, i):
"""Loads 1 image from dataset index 'i', returns (im, resized hw)."""
im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i]
if im is None: # not cached in RAM
if fn.exists(): # load npy
im = np.load(fn)
else: # read image
im = cv2.imread(f) # BGR
if im is None:
raise FileNotFoundError(f'Image Not Found {f}')
h0, w0 = im.shape[:2] # orig hw
im = cv2.resize(im, (self.imgsz, self.imgsz), interpolation=cv2.INTER_LINEAR)
# Add to buffer if training with augmentations
if self.augment:
self.ims[i], self.im_hw0[i], self.im_hw[i] = im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized
self.buffer.append(i)
if len(self.buffer) >= self.max_buffer_length:
j = self.buffer.pop(0)
self.ims[j], self.im_hw0[j], self.im_hw[j] = None, None, None
return im, (h0, w0), im.shape[:2]
return self.ims[i], self.im_hw0[i], self.im_hw[i]
def build_transforms(self, hyp=None):
"""Temporarily, only for evaluation."""
if self.augment:
hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0
hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0
transforms = v8_transforms(self, self.imgsz, hyp, stretch=True)
else:
# transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), auto=False, scaleFill=True)])
transforms = Compose([])
transforms.append(
Format(bbox_format='xywh',
normalize=True,
return_mask=self.use_segments,
return_keypoint=self.use_keypoints,
batch_idx=True,
mask_ratio=hyp.mask_ratio,
mask_overlap=hyp.overlap_mask))
return transforms
class RTDETRValidator(DetectionValidator):
def build_dataset(self, img_path, mode='val', batch=None):
"""Build YOLO Dataset
Args:
img_path (str): Path to the folder containing images.
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
batch (int, optional): Size of batches, this is for `rect`. Defaults to None.
"""
return RTDETRDataset(
img_path=img_path,
imgsz=self.args.imgsz,
batch_size=batch,
augment=False, # no augmentation
hyp=self.args,
rect=False, # no rect
cache=self.args.cache or None,
prefix=colorstr(f'{mode}: '),
data=self.data)
def postprocess(self, preds):
"""Apply Non-maximum suppression to prediction outputs."""
bs, _, nd = preds[0].shape
bboxes, scores = preds[0].split((4, nd - 4), dim=-1)
bboxes *= self.args.imgsz
outputs = [torch.zeros((0, 6), device=bboxes.device)] * bs
for i, bbox in enumerate(bboxes): # (300, 4)
bbox = ops.xywh2xyxy(bbox)
score, cls = scores[i].max(-1) # (300, )
# Do not need threshold for evaluation as only got 300 boxes here.
# idx = score > self.args.conf
pred = torch.cat([bbox, score[..., None], cls[..., None]], dim=-1) # filter
# sort by confidence to correctly get internal metrics.
pred = pred[score.argsort(descending=True)]
outputs[i] = pred # [idx]
return outputs
def update_metrics(self, preds, batch):
"""Metrics."""
for si, pred in enumerate(preds):
idx = batch['batch_idx'] == si
cls = batch['cls'][idx]
bbox = batch['bboxes'][idx]
nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions
shape = batch['ori_shape'][si]
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
self.seen += 1
if npr == 0:
if nl:
self.stats.append((correct_bboxes, *torch.zeros((2, 0), device=self.device), cls.squeeze(-1)))
if self.args.plots:
self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1))
continue
# Predictions
if self.args.single_cls:
pred[:, 5] = 0
predn = pred.clone()
predn[..., [0, 2]] *= shape[1] / self.args.imgsz # native-space pred
predn[..., [1, 3]] *= shape[0] / self.args.imgsz # native-space pred
# Evaluate
if nl:
tbox = ops.xywh2xyxy(bbox) # target boxes
tbox[..., [0, 2]] *= shape[1] # native-space pred
tbox[..., [1, 3]] *= shape[0] # native-space pred
labelsn = torch.cat((cls, tbox), 1) # native-space labels
# NOTE: To get correct metrics, the inputs of `_process_batch` should always be float32 type.
correct_bboxes = self._process_batch(predn.float(), labelsn)
# TODO: maybe remove these `self.` arguments as they already are member variable
if self.args.plots:
self.confusion_matrix.process_batch(predn, labelsn)
self.stats.append((correct_bboxes, pred[:, 4], pred[:, 5], cls.squeeze(-1))) # (conf, pcls, tcls)
# Save
if self.args.save_json:
self.pred_to_json(predn, batch['im_file'][si])
if self.args.save_txt:
file = self.save_dir / 'labels' / f'{Path(batch["im_file"][si]).stem}.txt'
self.save_one_txt(predn, self.args.save_conf, shape, file)