|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
"""
|
|
|
|
SAM model interface
|
|
|
|
"""
|
|
|
|
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
from ultralytics.engine.model import Model
|
|
|
|
from ultralytics.utils.torch_utils import model_info
|
|
|
|
|
|
|
|
from .build import build_sam
|
|
|
|
from .predict import Predictor
|
|
|
|
|
|
|
|
|
|
|
|
class SAM(Model):
|
|
|
|
"""
|
|
|
|
SAM model interface.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, model='sam_b.pt') -> None:
|
|
|
|
if model and Path(model).suffix not in ('.pt', '.pth'):
|
|
|
|
raise NotImplementedError('SAM prediction requires pre-trained *.pt or *.pth model.')
|
|
|
|
super().__init__(model=model, task='segment')
|
|
|
|
|
|
|
|
def _load(self, weights: str, task=None):
|
|
|
|
self.model = build_sam(weights)
|
|
|
|
|
|
|
|
def predict(self, source, stream=False, bboxes=None, points=None, labels=None, **kwargs):
|
|
|
|
"""Predicts and returns segmentation masks for given image or video source."""
|
|
|
|
overrides = dict(conf=0.25, task='segment', mode='predict', imgsz=1024)
|
|
|
|
kwargs.update(overrides)
|
|
|
|
prompts = dict(bboxes=bboxes, points=points, labels=labels)
|
|
|
|
return super().predict(source, stream, prompts=prompts, **kwargs)
|
|
|
|
|
|
|
|
def __call__(self, source=None, stream=False, bboxes=None, points=None, labels=None, **kwargs):
|
|
|
|
"""Calls the 'predict' function with given arguments to perform object detection."""
|
|
|
|
return self.predict(source, stream, bboxes, points, labels, **kwargs)
|
|
|
|
|
|
|
|
def info(self, detailed=False, verbose=True):
|
|
|
|
"""
|
|
|
|
Logs model info.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
detailed (bool): Show detailed information about model.
|
|
|
|
verbose (bool): Controls verbosity.
|
|
|
|
"""
|
|
|
|
return model_info(self.model, detailed=detailed, verbose=verbose)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def task_map(self):
|
|
|
|
return {'segment': {'predictor': Predictor}}
|