You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

74 lines
1.6 KiB

import torch
from ultralytics.yolo import YOLO
def test_model_forward():
model = YOLO()
model.new("yolov5n-seg.yaml")
img = torch.rand(512 * 512 * 3).view(1, 3, 512, 512)
model.forward(img)
model(img)
def test_model_info():
model = YOLO()
model.new("yolov5n.yaml")
model.info()
model.load("balloon-detect.pt")
model.info(verbose=True)
def test_model_fuse():
model = YOLO()
model.new("yolov5n.yaml")
model.fuse()
model.load("balloon-detect.pt")
model.fuse()
def test_visualize_preds():
model = YOLO()
model.load("balloon-segment.pt")
model.predict(source="ultralytics/assets")
def test_val():
model = YOLO()
model.load("balloon-segment.pt")
model.val(data="coco128-seg.yaml", img_size=32)
def test_model_resume():
model = YOLO()
model.new("yolov5n-seg.yaml")
model.train(epochs=1, img_size=32, data="coco128-seg.yaml")
try:
model.resume(task="segment")
except AssertionError:
print("Successfully caught resume assert!")
def test_model_train_pretrained():
model = YOLO()
model.load("balloon-detect.pt")
model.train(data="coco128.yaml", epochs=1, img_size=32)
model.new("yolov5n.yaml")
model.train(data="coco128.yaml", epochs=1, img_size=32)
img = torch.rand(512 * 512 * 3).view(1, 3, 512, 512)
model(img)
def test():
test_model_forward()
test_model_info()
test_model_fuse()
test_visualize_preds()
test_val()
test_model_resume()
test_model_train_pretrained()
if __name__ == "__main__":
test()