|
|
|
import subprocess
|
|
|
|
import time
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import hydra
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from ultralytics.yolo import v8
|
|
|
|
from ultralytics.yolo.data import build_classification_dataloader
|
|
|
|
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG, BaseTrainer
|
|
|
|
from ultralytics.yolo.utils.downloads import download
|
|
|
|
from ultralytics.yolo.utils.files import WorkingDirectory
|
|
|
|
from ultralytics.yolo.utils.loggers import colorstr
|
|
|
|
from ultralytics.yolo.utils.torch_utils import LOCAL_RANK, torch_distributed_zero_first
|
|
|
|
|
|
|
|
|
|
|
|
# BaseTrainer python usage
|
|
|
|
class ClassificationTrainer(BaseTrainer):
|
|
|
|
|
|
|
|
def get_dataset(self, dataset):
|
|
|
|
# temporary solution. Replace with new ultralytics.yolo.ClassificationDataset module
|
|
|
|
data = Path("datasets") / dataset
|
|
|
|
with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(Path.cwd()):
|
|
|
|
data_dir = data if data.is_dir() else (Path.cwd() / data)
|
|
|
|
if not data_dir.is_dir():
|
|
|
|
self.console.info(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...')
|
|
|
|
t = time.time()
|
|
|
|
if str(data) == 'imagenet':
|
|
|
|
subprocess.run(f"bash {v8.ROOT / 'data/scripts/get_imagenet.sh'}", shell=True, check=True)
|
|
|
|
else:
|
|
|
|
url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{dataset}.zip'
|
|
|
|
download(url, dir=data_dir.parent)
|
|
|
|
s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n"
|
|
|
|
self.console.info(s)
|
|
|
|
train_set = data_dir / "train"
|
|
|
|
test_set = data_dir / 'test' if (data_dir / 'test').exists() else data_dir / 'val' # data/test or data/val
|
|
|
|
|
|
|
|
return train_set, test_set
|
|
|
|
|
|
|
|
def get_dataloader(self, dataset_path, batch_size=None, rank=0):
|
|
|
|
return build_classification_dataloader(path=dataset_path, batch_size=self.args.batch_size, rank=rank)
|
|
|
|
|
|
|
|
def get_validator(self):
|
|
|
|
return v8.classify.ClassificationValidator(self.test_loader, self.device, logger=self.console)
|
|
|
|
|
|
|
|
def criterion(self, preds, targets):
|
|
|
|
return torch.nn.functional.cross_entropy(preds, targets)
|
|
|
|
|
|
|
|
|
|
|
|
@hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.stem)
|
|
|
|
def train(cfg):
|
|
|
|
cfg.model = cfg.model or "resnet18"
|
|
|
|
cfg.data = cfg.data or "imagenette160" # or yolo.ClassificationDataset("mnist")
|
|
|
|
trainer = ClassificationTrainer(cfg)
|
|
|
|
trainer.train()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
"""
|
|
|
|
CLI usage:
|
|
|
|
python path/to/train.py epochs=10 project=PROJECT lr0=0.1
|
|
|
|
|
|
|
|
TODO:
|
|
|
|
Direct cli support, i.e, yolov8 classify_train args.epochs 10
|
|
|
|
"""
|
|
|
|
train()
|