You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

160 lines
6.0 KiB

# Ultralytics YOLO 🚀, GPL-3.0 license
import hydra
import torch
import torchvision
from ultralytics.nn.tasks import ClassificationModel, attempt_load_one_weight
from ultralytics.yolo import v8
from ultralytics.yolo.data import build_classification_dataloader
from ultralytics.yolo.engine.trainer import BaseTrainer
from ultralytics.yolo.utils import DEFAULT_CONFIG
from ultralytics.yolo.utils.torch_utils import strip_optimizer
class ClassificationTrainer(BaseTrainer):
def __init__(self, config=DEFAULT_CONFIG, overrides=None):
if overrides is None:
overrides = {}
overrides["task"] = "classify"
super().__init__(config, overrides)
def set_model_attributes(self):
self.model.names = self.data["names"]
def get_model(self, cfg=None, weights=None, verbose=True):
model = ClassificationModel(cfg, nc=self.data["nc"])
if weights:
model.load(weights)
pretrained = False
for m in model.modules():
if not pretrained and hasattr(m, 'reset_parameters'):
m.reset_parameters()
if isinstance(m, torch.nn.Dropout) and self.args.dropout:
m.p = self.args.dropout # set dropout
for p in model.parameters():
p.requires_grad = True # for training
# Update defaults
if self.args.imgsz == 640:
self.args.imgsz = 224
return model
def setup_model(self):
"""
load/create/download model for any task
"""
# classification models require special handling
if isinstance(self.model, torch.nn.Module): # if model is loaded beforehand. No setup needed
return
model = str(self.model)
# Load a YOLO model locally, from torchvision, or from Ultralytics assets
if model.endswith(".pt"):
self.model, _ = attempt_load_one_weight(model, device='cpu')
for p in model.parameters():
p.requires_grad = True # for training
elif model.endswith(".yaml"):
self.model = self.get_model(cfg=model)
elif model in torchvision.models.__dict__:
pretrained = True
self.model = torchvision.models.__dict__[model](weights='IMAGENET1K_V1' if pretrained else None)
else:
FileNotFoundError(f'ERROR: model={model} not found locally or online. Please check model name.')
return # dont return ckpt. Classification doesn't support resume
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
loader = build_classification_dataloader(path=dataset_path,
imgsz=self.args.imgsz,
batch_size=batch_size if mode == "train" else (batch_size * 2),
augment=mode == "train",
rank=rank,
workers=self.args.workers)
if mode != "train":
self.model.transforms = loader.dataset.torch_transforms # attach inference transforms
return loader
def preprocess_batch(self, batch):
batch["img"] = batch["img"].to(self.device)
batch["cls"] = batch["cls"].to(self.device)
return batch
def progress_string(self):
return ('\n' + '%11s' * (4 + len(self.loss_names))) % \
('Epoch', 'GPU_mem', *self.loss_names, 'Instances', 'Size')
def get_validator(self):
self.loss_names = ['loss']
return v8.classify.ClassificationValidator(self.test_loader, self.save_dir, logger=self.console)
def criterion(self, preds, batch):
loss = torch.nn.functional.cross_entropy(preds, batch["cls"], reduction='sum') / self.args.nbs
loss_items = loss.detach()
return loss, loss_items
# def label_loss_items(self, loss_items=None, prefix="train"):
# """
# Returns a loss dict with labelled training loss items tensor
# """
# # Not needed for classification but necessary for segmentation & detection
# keys = [f"{prefix}/{x}" for x in self.loss_names]
# if loss_items is not None:
# loss_items = [round(float(x), 5) for x in loss_items] # convert tensors to 5 decimal place floats
# return dict(zip(keys, loss_items))
# else:
# return keys
def label_loss_items(self, loss_items=None, prefix="train"):
"""
Returns a loss dict with labelled training loss items tensor
"""
# Not needed for classification but necessary for segmentation & detection
keys = [f"{prefix}/{x}" for x in self.loss_names]
if loss_items is None:
return keys
loss_items = [round(float(loss_items), 5)]
return dict(zip(keys, loss_items))
def resume_training(self, ckpt):
pass
def final_eval(self):
for f in self.last, self.best:
if f.exists():
strip_optimizer(f) # strip optimizers
# TODO: validate best.pt after training completes
# if f is self.best:
# self.console.info(f'\nValidating {f}...')
# self.validator.args.save_json = True
# self.metrics = self.validator(model=f)
# self.metrics.pop('fitness', None)
# self.run_callbacks('on_fit_epoch_end')
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
def train(cfg):
cfg.model = cfg.model or "yolov8n-cls.pt" # or "resnet18"
cfg.data = cfg.data or "mnist160" # or yolo.ClassificationDataset("mnist")
# Reproduce ImageNet results
# cfg.lr0 = 0.1
# cfg.weight_decay = 5e-5
# cfg.label_smoothing = 0.1
# cfg.warmup_epochs = 0.0
cfg.device = cfg.device if cfg.device is not None else ''
# trainer = ClassificationTrainer(cfg)
# trainer.train()
from ultralytics import YOLO
model = YOLO(cfg.model)
model.train(**cfg)
if __name__ == "__main__":
train()