You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

63 lines
1.9 KiB

from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
try:
import clearml
from clearml import Task
assert hasattr(clearml, '__version__')
except (ImportError, AssertionError):
clearml = None
def _log_scalers(metric_dict, group="", step=0):
task = Task.current_task()
if task:
for k, v in metric_dict.items():
task.get_logger().report_scalar(group, k, v, step)
def before_train(trainer):
# TODO: reuse existing task
task = Task.init(project_name=trainer.args.project if trainer.args.project != 'runs/train' else 'YOLOv5',
task_name=trainer.args.name if trainer.args.name != 'exp' else 'Training',
tags=['YOLOv5'],
output_uri=True,
reuse_last_task_id=False,
auto_connect_frameworks={'pytorch': False})
task.connect(trainer.args, name='parameters')
def on_batch_end(trainer):
train_loss = trainer.tloss
_log_scalers(trainer.label_loss_items(train_loss), "train", trainer.epoch)
def on_val_end(trainer):
metrics = trainer.metrics
val_losses = trainer.validator.loss
val_loss_dict = trainer.label_loss_items(val_losses)
_log_scalers(val_loss_dict, "val", trainer.epoch)
_log_scalers(metrics, "metrics", trainer.epoch)
if trainer.epoch == 0:
infer_speed = trainer.validator.speed[1]
model_info = {
"inference_speed": infer_speed,
"flops@640": get_flops(trainer.model),
"params": get_num_params(trainer.model)}
_log_scalers(model_info, "model")
def on_train_end(trainer):
task = Task.current_task()
if task:
task.update_output_model(model_path=str(trainer.best), model_name='Best Model', auto_delete_file=False)
callbacks = {
"before_train": before_train,
"on_val_end": on_val_end,
"on_batch_end": on_batch_end,
"on_train_end": on_train_end}