|
|
|
from copy import deepcopy
|
|
|
|
|
|
|
|
import thop
|
|
|
|
|
|
|
|
from ultralytics.yolo.utils.anchors import check_anchor_order
|
|
|
|
from ultralytics.yolo.utils.modeling import parse_model
|
|
|
|
from ultralytics.yolo.utils.modeling.modules import *
|
|
|
|
from ultralytics.yolo.utils.torch_utils import (fuse_conv_and_bn, initialize_weights, intersect_state_dicts, model_info,
|
|
|
|
scale_img, time_sync)
|
|
|
|
|
|
|
|
|
|
|
|
class BaseModel(nn.Module):
|
|
|
|
# YOLOv5 base model
|
|
|
|
def forward(self, x, profile=False, visualize=False):
|
|
|
|
return self._forward_once(x, profile, visualize) # single-scale inference, train
|
|
|
|
|
|
|
|
def _forward_once(self, x, profile=False, visualize=False):
|
|
|
|
y, dt = [], [] # outputs
|
|
|
|
for m in self.model:
|
|
|
|
if m.f != -1: # if not from previous layer
|
|
|
|
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
|
|
|
if profile:
|
|
|
|
self._profile_one_layer(m, x, dt)
|
|
|
|
x = m(x) # run
|
|
|
|
y.append(x if m.i in self.save else None) # save output
|
|
|
|
if visualize:
|
|
|
|
pass
|
|
|
|
# TODO: feature_visualization(x, m.type, m.i, save_dir=visualize)
|
|
|
|
return x
|
|
|
|
|
|
|
|
def _profile_one_layer(self, m, x, dt):
|
|
|
|
c = m == self.model[-1] # is final layer, copy input as inplace fix
|
|
|
|
o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
|
|
|
|
t = time_sync()
|
|
|
|
for _ in range(10):
|
|
|
|
m(x.copy() if c else x)
|
|
|
|
dt.append((time_sync() - t) * 100)
|
|
|
|
if m == self.model[0]:
|
|
|
|
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module")
|
|
|
|
LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
|
|
|
|
if c:
|
|
|
|
LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
|
|
|
|
|
|
|
|
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
|
|
|
|
LOGGER.info('Fusing layers... ')
|
|
|
|
for m in self.model.modules():
|
|
|
|
if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
|
|
|
|
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
|
|
|
delattr(m, 'bn') # remove batchnorm
|
|
|
|
m.forward = m.forward_fuse # update forward
|
|
|
|
self.info()
|
|
|
|
return self
|
|
|
|
|
|
|
|
def info(self, verbose=False, imgsz=640): # print model information
|
|
|
|
model_info(self, verbose, imgsz)
|
|
|
|
|
|
|
|
def _apply(self, fn):
|
|
|
|
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
|
|
|
|
self = super()._apply(fn)
|
|
|
|
m = self.model[-1] # Detect()
|
|
|
|
if isinstance(m, (Detect, Segment)):
|
|
|
|
m.stride = fn(m.stride)
|
|
|
|
m.grid = list(map(fn, m.grid))
|
|
|
|
if isinstance(m.anchor_grid, list):
|
|
|
|
m.anchor_grid = list(map(fn, m.anchor_grid))
|
|
|
|
return self
|
|
|
|
|
|
|
|
def load(self, weights):
|
|
|
|
# Force all tasks to implement this function
|
|
|
|
raise NotImplementedError("This function needs to be implemented by derived classes!")
|
|
|
|
|
|
|
|
|
|
|
|
class DetectionModel(BaseModel):
|
|
|
|
# YOLO detection model
|
|
|
|
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
|
|
|
|
super().__init__()
|
|
|
|
if isinstance(cfg, dict):
|
|
|
|
self.yaml = cfg # model dict
|
|
|
|
else: # is *.yaml
|
|
|
|
import yaml # for torch hub
|
|
|
|
self.yaml_file = Path(cfg).name
|
|
|
|
with open(cfg, encoding='ascii', errors='ignore') as f:
|
|
|
|
self.yaml = yaml.safe_load(f) # model dict
|
|
|
|
|
|
|
|
# Define model
|
|
|
|
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
|
|
|
|
if nc and nc != self.yaml['nc']:
|
|
|
|
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
|
|
|
|
self.yaml['nc'] = nc # override yaml value
|
|
|
|
if anchors:
|
|
|
|
LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
|
|
|
|
self.yaml['anchors'] = round(anchors) # override yaml value
|
|
|
|
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
|
|
|
|
self.names = [str(i) for i in range(self.yaml['nc'])] # default names
|
|
|
|
self.inplace = self.yaml.get('inplace', True)
|
|
|
|
|
|
|
|
# Build strides, anchors
|
|
|
|
m = self.model[-1] # Detect()
|
|
|
|
if isinstance(m, (Detect, Segment)):
|
|
|
|
s = 256 # 2x min stride
|
|
|
|
m.inplace = self.inplace
|
|
|
|
forward = lambda x: self.forward(x)[0] if isinstance(m, Segment) else self.forward(x)
|
|
|
|
m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward
|
|
|
|
check_anchor_order(m)
|
|
|
|
m.anchors /= m.stride.view(-1, 1, 1)
|
|
|
|
self.stride = m.stride
|
|
|
|
self._initialize_biases() # only run once
|
|
|
|
|
|
|
|
# Init weights, biases
|
|
|
|
initialize_weights(self)
|
|
|
|
self.info()
|
|
|
|
LOGGER.info('')
|
|
|
|
|
|
|
|
def forward(self, x, augment=False, profile=False, visualize=False):
|
|
|
|
if augment:
|
|
|
|
return self._forward_augment(x) # augmented inference, None
|
|
|
|
return self._forward_once(x, profile, visualize) # single-scale inference, train
|
|
|
|
|
|
|
|
def _forward_augment(self, x):
|
|
|
|
imgsz = x.shape[-2:] # height, width
|
|
|
|
s = [1, 0.83, 0.67] # scales
|
|
|
|
f = [None, 3, None] # flips (2-ud, 3-lr)
|
|
|
|
y = [] # outputs
|
|
|
|
for si, fi in zip(s, f):
|
|
|
|
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
|
|
|
|
yi = self._forward_once(xi)[0] # forward
|
|
|
|
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
|
|
|
|
yi = self._descale_pred(yi, fi, si, imgsz)
|
|
|
|
y.append(yi)
|
|
|
|
y = self._clip_augmented(y) # clip augmented tails
|
|
|
|
return torch.cat(y, 1), None # augmented inference, train
|
|
|
|
|
|
|
|
def _descale_pred(self, p, flips, scale, imgsz):
|
|
|
|
# de-scale predictions following augmented inference (inverse operation)
|
|
|
|
if self.inplace:
|
|
|
|
p[..., :4] /= scale # de-scale
|
|
|
|
if flips == 2:
|
|
|
|
p[..., 1] = imgsz[0] - p[..., 1] # de-flip ud
|
|
|
|
elif flips == 3:
|
|
|
|
p[..., 0] = imgsz[1] - p[..., 0] # de-flip lr
|
|
|
|
else:
|
|
|
|
x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale
|
|
|
|
if flips == 2:
|
|
|
|
y = imgsz[0] - y # de-flip ud
|
|
|
|
elif flips == 3:
|
|
|
|
x = imgsz[1] - x # de-flip lr
|
|
|
|
p = torch.cat((x, y, wh, p[..., 4:]), -1)
|
|
|
|
return p
|
|
|
|
|
|
|
|
def _clip_augmented(self, y):
|
|
|
|
# Clip YOLOv5 augmented inference tails
|
|
|
|
nl = self.model[-1].nl # number of detection layers (P3-P5)
|
|
|
|
g = sum(4 ** x for x in range(nl)) # grid points
|
|
|
|
e = 1 # exclude layer count
|
|
|
|
i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indices
|
|
|
|
y[0] = y[0][:, :-i] # large
|
|
|
|
i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
|
|
|
|
y[-1] = y[-1][:, i:] # small
|
|
|
|
return y
|
|
|
|
|
|
|
|
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
|
|
|
|
# https://arxiv.org/abs/1708.02002 section 3.3
|
|
|
|
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
|
|
|
|
m = self.model[-1] # Detect() module
|
|
|
|
for mi, s in zip(m.m, m.stride): # from
|
|
|
|
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
|
|
|
|
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
|
|
|
|
b.data[:, 5:5 + m.nc] += math.log(0.6 / (m.nc - 0.99999)) if cf is None else torch.log(cf / cf.sum()) # cls
|
|
|
|
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
|
|
|
|
|
|
|
def load(self, weights):
|
|
|
|
csd = weights['model'].float().state_dict() # checkpoint state_dict as FP32
|
|
|
|
csd = intersect_state_dicts(csd, self.state_dict()) # intersect
|
|
|
|
self.load_state_dict(csd, strict=False) # load
|
|
|
|
LOGGER.info(f'Transferred {len(csd)}/{len(self.model.state_dict())} items from pretrained weights')
|
|
|
|
|
|
|
|
|
|
|
|
class SegmentationModel(DetectionModel):
|
|
|
|
# YOLOv5 segmentation model
|
|
|
|
def __init__(self, cfg='yolov5s-seg.yaml', ch=3, nc=None, anchors=None):
|
|
|
|
super().__init__(cfg, ch, nc, anchors)
|
|
|
|
|
|
|
|
|
|
|
|
class ClassificationModel(BaseModel):
|
|
|
|
# YOLOv5 classification model
|
|
|
|
def __init__(self, cfg=None, model=None, nc=1000, cutoff=10): # yaml, model, number of classes, cutoff index
|
|
|
|
super().__init__()
|
|
|
|
self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg)
|
|
|
|
|
|
|
|
def _from_detection_model(self, model, nc=1000, cutoff=10):
|
|
|
|
# Create a YOLOv5 classification model from a YOLOv5 detection model
|
|
|
|
if isinstance(model, AutoBackend):
|
|
|
|
model = model.model # unwrap DetectMultiBackend
|
|
|
|
model.model = model.model[:cutoff] # backbone
|
|
|
|
m = model.model[-1] # last layer
|
|
|
|
ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels # ch into module
|
|
|
|
c = Classify(ch, nc) # Classify()
|
|
|
|
c.i, c.f, c.type = m.i, m.f, 'models.common.Classify' # index, from, type
|
|
|
|
model.model[-1] = c # replace
|
|
|
|
self.model = model.model
|
|
|
|
self.stride = model.stride
|
|
|
|
self.save = []
|
|
|
|
self.nc = nc
|
|
|
|
|
|
|
|
def _from_yaml(self, cfg):
|
|
|
|
# TODO: Create a YOLOv5 classification model from a *.yaml file
|
|
|
|
self.model = None
|
|
|
|
|
|
|
|
def load(self, weights):
|
|
|
|
model = weights["model"] if isinstance(weights, dict) else weights # torchvision models are not dicts
|
|
|
|
csd = model.float().state_dict()
|
|
|
|
csd = intersect_state_dicts(csd, self.state_dict()) # intersect
|
|
|
|
self.load_state_dict(csd, strict=False) # load
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def reshape_outputs(model, nc):
|
|
|
|
# Update a TorchVision classification model to class count 'n' if required
|
|
|
|
from ultralytics.yolo.utils.modeling.modules import Classify
|
|
|
|
name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1] # last module
|
|
|
|
if isinstance(m, Classify): # YOLO Classify() head
|
|
|
|
if m.linear.out_features != nc:
|
|
|
|
m.linear = nn.Linear(m.linear.in_features, nc)
|
|
|
|
elif isinstance(m, nn.Linear): # ResNet, EfficientNet
|
|
|
|
if m.out_features != nc:
|
|
|
|
setattr(model, name, nn.Linear(m.in_features, nc))
|
|
|
|
elif isinstance(m, nn.Sequential):
|
|
|
|
types = [type(x) for x in m]
|
|
|
|
if nn.Linear in types:
|
|
|
|
i = types.index(nn.Linear) # nn.Linear index
|
|
|
|
if m[i].out_features != nc:
|
|
|
|
m[i] = nn.Linear(m[i].in_features, nc)
|
|
|
|
elif nn.Conv2d in types:
|
|
|
|
i = types.index(nn.Conv2d) # nn.Conv2d index
|
|
|
|
if m[i].out_channels != nc:
|
|
|
|
m[i] = nn.Conv2d(m[i].in_channels, nc, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None)
|