|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
"""
|
|
|
|
Model head modules
|
|
|
|
"""
|
|
|
|
|
|
|
|
import math
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
from torch.nn.init import constant_, xavier_uniform_
|
|
|
|
|
|
|
|
from ultralytics.yolo.utils.tal import dist2bbox, make_anchors
|
|
|
|
|
|
|
|
from .block import DFL, Proto
|
|
|
|
from .conv import Conv
|
|
|
|
from .transformer import MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer
|
|
|
|
from .utils import bias_init_with_prob, linear_init_
|
|
|
|
|
|
|
|
__all__ = 'Detect', 'Segment', 'Pose', 'Classify', 'RTDETRDecoder'
|
|
|
|
|
|
|
|
|
|
|
|
class Detect(nn.Module):
|
|
|
|
"""YOLOv8 Detect head for detection models."""
|
|
|
|
dynamic = False # force grid reconstruction
|
|
|
|
export = False # export mode
|
|
|
|
shape = None
|
|
|
|
anchors = torch.empty(0) # init
|
|
|
|
strides = torch.empty(0) # init
|
|
|
|
|
|
|
|
def __init__(self, nc=80, ch=()): # detection layer
|
|
|
|
super().__init__()
|
|
|
|
self.nc = nc # number of classes
|
|
|
|
self.nl = len(ch) # number of detection layers
|
|
|
|
self.reg_max = 16 # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)
|
|
|
|
self.no = nc + self.reg_max * 4 # number of outputs per anchor
|
|
|
|
self.stride = torch.zeros(self.nl) # strides computed during build
|
|
|
|
c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], self.nc) # channels
|
|
|
|
self.cv2 = nn.ModuleList(
|
|
|
|
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch)
|
|
|
|
self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
|
|
|
|
self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
"""Concatenates and returns predicted bounding boxes and class probabilities."""
|
|
|
|
shape = x[0].shape # BCHW
|
|
|
|
for i in range(self.nl):
|
|
|
|
x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
|
|
|
|
if self.training:
|
|
|
|
return x
|
|
|
|
elif self.dynamic or self.shape != shape:
|
|
|
|
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
|
|
|
|
self.shape = shape
|
|
|
|
|
|
|
|
x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)
|
|
|
|
if self.export and self.format in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs'): # avoid TF FlexSplitV ops
|
|
|
|
box = x_cat[:, :self.reg_max * 4]
|
|
|
|
cls = x_cat[:, self.reg_max * 4:]
|
|
|
|
else:
|
|
|
|
box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
|
|
|
|
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
|
|
|
y = torch.cat((dbox, cls.sigmoid()), 1)
|
|
|
|
return y if self.export else (y, x)
|
|
|
|
|
|
|
|
def bias_init(self):
|
|
|
|
"""Initialize Detect() biases, WARNING: requires stride availability."""
|
|
|
|
m = self # self.model[-1] # Detect() module
|
|
|
|
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
|
|
|
|
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
|
|
|
|
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
|
|
|
|
a[-1].bias.data[:] = 1.0 # box
|
|
|
|
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img)
|
|
|
|
|
|
|
|
|
|
|
|
class Segment(Detect):
|
|
|
|
"""YOLOv8 Segment head for segmentation models."""
|
|
|
|
|
|
|
|
def __init__(self, nc=80, nm=32, npr=256, ch=()):
|
|
|
|
"""Initialize the YOLO model attributes such as the number of masks, prototypes, and the convolution layers."""
|
|
|
|
super().__init__(nc, ch)
|
|
|
|
self.nm = nm # number of masks
|
|
|
|
self.npr = npr # number of protos
|
|
|
|
self.proto = Proto(ch[0], self.npr, self.nm) # protos
|
|
|
|
self.detect = Detect.forward
|
|
|
|
|
|
|
|
c4 = max(ch[0] // 4, self.nm)
|
|
|
|
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
"""Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients."""
|
|
|
|
p = self.proto(x[0]) # mask protos
|
|
|
|
bs = p.shape[0] # batch size
|
|
|
|
|
|
|
|
mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients
|
|
|
|
x = self.detect(self, x)
|
|
|
|
if self.training:
|
|
|
|
return x, mc, p
|
|
|
|
return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
|
|
|
|
|
|
|
|
|
|
|
|
class Pose(Detect):
|
|
|
|
"""YOLOv8 Pose head for keypoints models."""
|
|
|
|
|
|
|
|
def __init__(self, nc=80, kpt_shape=(17, 3), ch=()):
|
|
|
|
"""Initialize YOLO network with default parameters and Convolutional Layers."""
|
|
|
|
super().__init__(nc, ch)
|
|
|
|
self.kpt_shape = kpt_shape # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
|
|
|
self.nk = kpt_shape[0] * kpt_shape[1] # number of keypoints total
|
|
|
|
self.detect = Detect.forward
|
|
|
|
|
|
|
|
c4 = max(ch[0] // 4, self.nk)
|
|
|
|
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nk, 1)) for x in ch)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
"""Perform forward pass through YOLO model and return predictions."""
|
|
|
|
bs = x[0].shape[0] # batch size
|
|
|
|
kpt = torch.cat([self.cv4[i](x[i]).view(bs, self.nk, -1) for i in range(self.nl)], -1) # (bs, 17*3, h*w)
|
|
|
|
x = self.detect(self, x)
|
|
|
|
if self.training:
|
|
|
|
return x, kpt
|
|
|
|
pred_kpt = self.kpts_decode(bs, kpt)
|
|
|
|
return torch.cat([x, pred_kpt], 1) if self.export else (torch.cat([x[0], pred_kpt], 1), (x[1], kpt))
|
|
|
|
|
|
|
|
def kpts_decode(self, bs, kpts):
|
|
|
|
"""Decodes keypoints."""
|
|
|
|
ndim = self.kpt_shape[1]
|
|
|
|
if self.export: # required for TFLite export to avoid 'PLACEHOLDER_FOR_GREATER_OP_CODES' bug
|
|
|
|
y = kpts.view(bs, *self.kpt_shape, -1)
|
|
|
|
a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * self.strides
|
|
|
|
if ndim == 3:
|
|
|
|
a = torch.cat((a, y[:, :, 2:3].sigmoid()), 2)
|
|
|
|
return a.view(bs, self.nk, -1)
|
|
|
|
else:
|
|
|
|
y = kpts.clone()
|
|
|
|
if ndim == 3:
|
|
|
|
y[:, 2::3].sigmoid_() # inplace sigmoid
|
|
|
|
y[:, 0::ndim] = (y[:, 0::ndim] * 2.0 + (self.anchors[0] - 0.5)) * self.strides
|
|
|
|
y[:, 1::ndim] = (y[:, 1::ndim] * 2.0 + (self.anchors[1] - 0.5)) * self.strides
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
class Classify(nn.Module):
|
|
|
|
"""YOLOv8 classification head, i.e. x(b,c1,20,20) to x(b,c2)."""
|
|
|
|
|
|
|
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
|
|
|
|
super().__init__()
|
|
|
|
c_ = 1280 # efficientnet_b0 size
|
|
|
|
self.conv = Conv(c1, c_, k, s, p, g)
|
|
|
|
self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1)
|
|
|
|
self.drop = nn.Dropout(p=0.0, inplace=True)
|
|
|
|
self.linear = nn.Linear(c_, c2) # to x(b,c2)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
"""Performs a forward pass of the YOLO model on input image data."""
|
|
|
|
if isinstance(x, list):
|
|
|
|
x = torch.cat(x, 1)
|
|
|
|
x = self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
|
|
|
|
return x if self.training else x.softmax(1)
|
|
|
|
|
|
|
|
|
|
|
|
class RTDETRDecoder(nn.Module):
|
|
|
|
export = False # export mode
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
nc=80,
|
|
|
|
ch=(512, 1024, 2048),
|
|
|
|
hd=256, # hidden dim
|
|
|
|
nq=300, # num queries
|
|
|
|
ndp=4, # num decoder points
|
|
|
|
nh=8, # num head
|
|
|
|
ndl=6, # num decoder layers
|
|
|
|
d_ffn=1024, # dim of feedforward
|
|
|
|
dropout=0.,
|
|
|
|
act=nn.ReLU(),
|
|
|
|
eval_idx=-1,
|
|
|
|
# training args
|
|
|
|
nd=100, # num denoising
|
|
|
|
label_noise_ratio=0.5,
|
|
|
|
box_noise_scale=1.0,
|
|
|
|
learnt_init_query=False):
|
|
|
|
super().__init__()
|
|
|
|
self.hidden_dim = hd
|
|
|
|
self.nhead = nh
|
|
|
|
self.nl = len(ch) # num level
|
|
|
|
self.nc = nc
|
|
|
|
self.num_queries = nq
|
|
|
|
self.num_decoder_layers = ndl
|
|
|
|
|
|
|
|
# backbone feature projection
|
|
|
|
self.input_proj = nn.ModuleList(nn.Sequential(nn.Conv2d(x, hd, 1, bias=False), nn.BatchNorm2d(hd)) for x in ch)
|
|
|
|
# NOTE: simplified version but it's not consistent with .pt weights.
|
|
|
|
# self.input_proj = nn.ModuleList(Conv(x, hd, act=False) for x in ch)
|
|
|
|
|
|
|
|
# Transformer module
|
|
|
|
decoder_layer = DeformableTransformerDecoderLayer(hd, nh, d_ffn, dropout, act, self.nl, ndp)
|
|
|
|
self.decoder = DeformableTransformerDecoder(hd, decoder_layer, ndl, eval_idx)
|
|
|
|
|
|
|
|
# denoising part
|
|
|
|
self.denoising_class_embed = nn.Embedding(nc, hd)
|
|
|
|
self.num_denoising = nd
|
|
|
|
self.label_noise_ratio = label_noise_ratio
|
|
|
|
self.box_noise_scale = box_noise_scale
|
|
|
|
|
|
|
|
# decoder embedding
|
|
|
|
self.learnt_init_query = learnt_init_query
|
|
|
|
if learnt_init_query:
|
|
|
|
self.tgt_embed = nn.Embedding(nq, hd)
|
|
|
|
self.query_pos_head = MLP(4, 2 * hd, hd, num_layers=2)
|
|
|
|
|
|
|
|
# encoder head
|
|
|
|
self.enc_output = nn.Sequential(nn.Linear(hd, hd), nn.LayerNorm(hd))
|
|
|
|
self.enc_score_head = nn.Linear(hd, nc)
|
|
|
|
self.enc_bbox_head = MLP(hd, hd, 4, num_layers=3)
|
|
|
|
|
|
|
|
# decoder head
|
|
|
|
self.dec_score_head = nn.ModuleList([nn.Linear(hd, nc) for _ in range(ndl)])
|
|
|
|
self.dec_bbox_head = nn.ModuleList([MLP(hd, hd, 4, num_layers=3) for _ in range(ndl)])
|
|
|
|
|
|
|
|
self._reset_parameters()
|
|
|
|
|
|
|
|
def forward(self, x, batch=None):
|
|
|
|
from ultralytics.vit.utils.ops import get_cdn_group
|
|
|
|
|
|
|
|
# input projection and embedding
|
|
|
|
feats, shapes = self._get_encoder_input(x)
|
|
|
|
|
|
|
|
# prepare denoising training
|
|
|
|
dn_embed, dn_bbox, attn_mask, dn_meta = \
|
|
|
|
get_cdn_group(batch,
|
|
|
|
self.nc,
|
|
|
|
self.num_queries,
|
|
|
|
self.denoising_class_embed.weight,
|
|
|
|
self.num_denoising,
|
|
|
|
self.label_noise_ratio,
|
|
|
|
self.box_noise_scale,
|
|
|
|
self.training)
|
|
|
|
|
|
|
|
embed, refer_bbox, enc_bboxes, enc_scores = \
|
|
|
|
self._get_decoder_input(feats, shapes, dn_embed, dn_bbox)
|
|
|
|
|
|
|
|
# decoder
|
|
|
|
dec_bboxes, dec_scores = self.decoder(embed,
|
|
|
|
refer_bbox,
|
|
|
|
feats,
|
|
|
|
shapes,
|
|
|
|
self.dec_bbox_head,
|
|
|
|
self.dec_score_head,
|
|
|
|
self.query_pos_head,
|
|
|
|
attn_mask=attn_mask)
|
|
|
|
x = dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta
|
|
|
|
if self.training:
|
|
|
|
return x
|
|
|
|
# (bs, 300, 4+nc)
|
|
|
|
y = torch.cat((dec_bboxes.squeeze(0), dec_scores.squeeze(0).sigmoid()), -1)
|
|
|
|
return y if self.export else (y, x)
|
|
|
|
|
|
|
|
def _generate_anchors(self, shapes, grid_size=0.05, dtype=torch.float32, device='cpu', eps=1e-2):
|
|
|
|
anchors = []
|
|
|
|
for i, (h, w) in enumerate(shapes):
|
|
|
|
grid_y, grid_x = torch.meshgrid(torch.arange(end=h, dtype=dtype, device=device),
|
|
|
|
torch.arange(end=w, dtype=dtype, device=device),
|
|
|
|
indexing='ij')
|
|
|
|
grid_xy = torch.stack([grid_x, grid_y], -1) # (h, w, 2)
|
|
|
|
|
|
|
|
valid_WH = torch.tensor([h, w], dtype=dtype, device=device)
|
|
|
|
grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_WH # (1, h, w, 2)
|
|
|
|
wh = torch.ones_like(grid_xy, dtype=dtype, device=device) * grid_size * (2.0 ** i)
|
|
|
|
anchors.append(torch.cat([grid_xy, wh], -1).view(-1, h * w, 4)) # (1, h*w, 4)
|
|
|
|
|
|
|
|
anchors = torch.cat(anchors, 1) # (1, h*w*nl, 4)
|
|
|
|
valid_mask = ((anchors > eps) * (anchors < 1 - eps)).all(-1, keepdim=True) # 1, h*w*nl, 1
|
|
|
|
anchors = torch.log(anchors / (1 - anchors))
|
|
|
|
anchors = torch.where(valid_mask, anchors, torch.inf)
|
|
|
|
return anchors, valid_mask
|
|
|
|
|
|
|
|
def _get_encoder_input(self, x):
|
|
|
|
# get projection features
|
|
|
|
x = [self.input_proj[i](feat) for i, feat in enumerate(x)]
|
|
|
|
# get encoder inputs
|
|
|
|
feats = []
|
|
|
|
shapes = []
|
|
|
|
for feat in x:
|
|
|
|
h, w = feat.shape[2:]
|
|
|
|
# [b, c, h, w] -> [b, h*w, c]
|
|
|
|
feats.append(feat.flatten(2).permute(0, 2, 1))
|
|
|
|
# [nl, 2]
|
|
|
|
shapes.append([h, w])
|
|
|
|
|
|
|
|
# [b, h*w, c]
|
|
|
|
feats = torch.cat(feats, 1)
|
|
|
|
return feats, shapes
|
|
|
|
|
|
|
|
def _get_decoder_input(self, feats, shapes, dn_embed=None, dn_bbox=None):
|
|
|
|
bs = len(feats)
|
|
|
|
# prepare input for decoder
|
|
|
|
anchors, valid_mask = self._generate_anchors(shapes, dtype=feats.dtype, device=feats.device)
|
|
|
|
features = self.enc_output(torch.where(valid_mask, feats, 0)) # bs, h*w, 256
|
|
|
|
|
|
|
|
enc_outputs_scores = self.enc_score_head(features) # (bs, h*w, nc)
|
|
|
|
# dynamic anchors + static content
|
|
|
|
enc_outputs_bboxes = self.enc_bbox_head(features) + anchors # (bs, h*w, 4)
|
|
|
|
|
|
|
|
# query selection
|
|
|
|
# (bs, num_queries)
|
|
|
|
topk_ind = torch.topk(enc_outputs_scores.max(-1).values, self.num_queries, dim=1).indices.view(-1)
|
|
|
|
# (bs, num_queries)
|
|
|
|
batch_ind = torch.arange(end=bs, dtype=topk_ind.dtype).unsqueeze(-1).repeat(1, self.num_queries).view(-1)
|
|
|
|
|
|
|
|
# Unsigmoided
|
|
|
|
refer_bbox = enc_outputs_bboxes[batch_ind, topk_ind].view(bs, self.num_queries, -1)
|
|
|
|
# refer_bbox = torch.gather(enc_outputs_bboxes, 1, topk_ind.reshape(bs, self.num_queries).unsqueeze(-1).repeat(1, 1, 4))
|
|
|
|
|
|
|
|
enc_bboxes = refer_bbox.sigmoid()
|
|
|
|
if dn_bbox is not None:
|
|
|
|
refer_bbox = torch.cat([dn_bbox, refer_bbox], 1)
|
|
|
|
if self.training:
|
|
|
|
refer_bbox = refer_bbox.detach()
|
|
|
|
enc_scores = enc_outputs_scores[batch_ind, topk_ind].view(bs, self.num_queries, -1)
|
|
|
|
|
|
|
|
if self.learnt_init_query:
|
|
|
|
embeddings = self.tgt_embed.weight.unsqueeze(0).repeat(bs, 1, 1)
|
|
|
|
else:
|
|
|
|
embeddings = features[batch_ind, topk_ind].view(bs, self.num_queries, -1)
|
|
|
|
if self.training:
|
|
|
|
embeddings = embeddings.detach()
|
|
|
|
if dn_embed is not None:
|
|
|
|
embeddings = torch.cat([dn_embed, embeddings], 1)
|
|
|
|
|
|
|
|
return embeddings, refer_bbox, enc_bboxes, enc_scores
|
|
|
|
|
|
|
|
# TODO
|
|
|
|
def _reset_parameters(self):
|
|
|
|
# class and bbox head init
|
|
|
|
bias_cls = bias_init_with_prob(0.01) / 80 * self.nc
|
|
|
|
# NOTE: the weight initialization in `linear_init_` would cause NaN when training with custom datasets.
|
|
|
|
# linear_init_(self.enc_score_head)
|
|
|
|
constant_(self.enc_score_head.bias, bias_cls)
|
|
|
|
constant_(self.enc_bbox_head.layers[-1].weight, 0.)
|
|
|
|
constant_(self.enc_bbox_head.layers[-1].bias, 0.)
|
|
|
|
for cls_, reg_ in zip(self.dec_score_head, self.dec_bbox_head):
|
|
|
|
# linear_init_(cls_)
|
|
|
|
constant_(cls_.bias, bias_cls)
|
|
|
|
constant_(reg_.layers[-1].weight, 0.)
|
|
|
|
constant_(reg_.layers[-1].bias, 0.)
|
|
|
|
|
|
|
|
linear_init_(self.enc_output[0])
|
|
|
|
xavier_uniform_(self.enc_output[0].weight)
|
|
|
|
if self.learnt_init_query:
|
|
|
|
xavier_uniform_(self.tgt_embed.weight)
|
|
|
|
xavier_uniform_(self.query_pos_head.layers[0].weight)
|
|
|
|
xavier_uniform_(self.query_pos_head.layers[1].weight)
|
|
|
|
for layer in self.input_proj:
|
|
|
|
xavier_uniform_(layer[0].weight)
|