|
|
|
# Ultralytics YOLO 🚀, GPL-3.0 license
|
|
|
|
"""
|
|
|
|
Ultralytics Results, Boxes and Masks classes for handling inference results
|
|
|
|
|
|
|
|
Usage: See https://docs.ultralytics.com/modes/predict/
|
|
|
|
"""
|
|
|
|
|
|
|
|
from copy import deepcopy
|
|
|
|
from functools import lru_cache
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from ultralytics.yolo.data.augment import LetterBox
|
|
|
|
from ultralytics.yolo.utils import LOGGER, SimpleClass, deprecation_warn, ops
|
|
|
|
from ultralytics.yolo.utils.plotting import Annotator, colors
|
|
|
|
|
|
|
|
|
|
|
|
class BaseTensor(SimpleClass):
|
|
|
|
"""
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
tensor (torch.Tensor): A tensor.
|
|
|
|
orig_shape (tuple): Original image size, in the format (height, width).
|
|
|
|
|
|
|
|
Methods:
|
|
|
|
cpu(): Returns a copy of the tensor on CPU memory.
|
|
|
|
numpy(): Returns a copy of the tensor as a numpy array.
|
|
|
|
cuda(): Returns a copy of the tensor on GPU memory.
|
|
|
|
to(): Returns a copy of the tensor with the specified device and dtype.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, tensor, orig_shape) -> None:
|
|
|
|
super().__init__()
|
|
|
|
assert isinstance(tensor, torch.Tensor)
|
|
|
|
self.tensor = tensor
|
|
|
|
self.orig_shape = orig_shape
|
|
|
|
|
|
|
|
@property
|
|
|
|
def shape(self):
|
|
|
|
return self.data.shape
|
|
|
|
|
|
|
|
@property
|
|
|
|
def data(self):
|
|
|
|
return self.tensor
|
|
|
|
|
|
|
|
def cpu(self):
|
|
|
|
return self.__class__(self.data.cpu(), self.orig_shape)
|
|
|
|
|
|
|
|
def numpy(self):
|
|
|
|
return self.__class__(self.data.numpy(), self.orig_shape)
|
|
|
|
|
|
|
|
def cuda(self):
|
|
|
|
return self.__class__(self.data.cuda(), self.orig_shape)
|
|
|
|
|
|
|
|
def to(self, *args, **kwargs):
|
|
|
|
return self.__class__(self.data.to(*args, **kwargs), self.orig_shape)
|
|
|
|
|
|
|
|
def __len__(self): # override len(results)
|
|
|
|
return len(self.data)
|
|
|
|
|
|
|
|
def __getitem__(self, idx):
|
|
|
|
return self.__class__(self.data[idx], self.orig_shape)
|
|
|
|
|
|
|
|
|
|
|
|
class Results(SimpleClass):
|
|
|
|
"""
|
|
|
|
A class for storing and manipulating inference results.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
orig_img (numpy.ndarray): The original image as a numpy array.
|
|
|
|
path (str): The path to the image file.
|
|
|
|
names (dict): A dictionary of class names.
|
|
|
|
boxes (List[List[float]], optional): A list of bounding box coordinates for each detection.
|
|
|
|
masks (numpy.ndarray, optional): A 3D numpy array of detection masks, where each mask is a binary image.
|
|
|
|
probs (numpy.ndarray, optional): A 2D numpy array of detection probabilities for each class.
|
|
|
|
keypoints (List[List[float]], optional): A list of detected keypoints for each object.
|
|
|
|
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
orig_img (numpy.ndarray): The original image as a numpy array.
|
|
|
|
orig_shape (tuple): The original image shape in (height, width) format.
|
|
|
|
boxes (Boxes, optional): A Boxes object containing the detection bounding boxes.
|
|
|
|
masks (Masks, optional): A Masks object containing the detection masks.
|
|
|
|
probs (numpy.ndarray, optional): A 2D numpy array of detection probabilities for each class.
|
|
|
|
names (dict): A dictionary of class names.
|
|
|
|
path (str): The path to the image file.
|
|
|
|
keypoints (List[List[float]], optional): A list of detected keypoints for each object.
|
|
|
|
speed (dict): A dictionary of preprocess, inference and postprocess speeds in milliseconds per image.
|
|
|
|
_keys (tuple): A tuple of attribute names for non-empty attributes.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, orig_img, path, names, boxes=None, masks=None, probs=None, keypoints=None) -> None:
|
|
|
|
self.orig_img = orig_img
|
|
|
|
self.orig_shape = orig_img.shape[:2]
|
|
|
|
self.boxes = Boxes(boxes, self.orig_shape) if boxes is not None else None # native size boxes
|
|
|
|
self.masks = Masks(masks, self.orig_shape) if masks is not None else None # native size or imgsz masks
|
|
|
|
self.probs = probs if probs is not None else None
|
|
|
|
self.keypoints = keypoints if keypoints is not None else None
|
|
|
|
self.speed = {'preprocess': None, 'inference': None, 'postprocess': None} # milliseconds per image
|
|
|
|
self.names = names
|
|
|
|
self.path = path
|
|
|
|
self._keys = ('boxes', 'masks', 'probs', 'keypoints')
|
|
|
|
|
|
|
|
def pandas(self):
|
|
|
|
pass
|
|
|
|
# TODO masks.pandas + boxes.pandas + cls.pandas
|
|
|
|
|
|
|
|
def __getitem__(self, idx):
|
|
|
|
r = self.new()
|
|
|
|
for k in self.keys:
|
|
|
|
setattr(r, k, getattr(self, k)[idx])
|
|
|
|
return r
|
|
|
|
|
|
|
|
def update(self, boxes=None, masks=None, probs=None):
|
|
|
|
if boxes is not None:
|
|
|
|
self.boxes = Boxes(boxes, self.orig_shape)
|
|
|
|
if masks is not None:
|
|
|
|
self.masks = Masks(masks, self.orig_shape)
|
|
|
|
if probs is not None:
|
|
|
|
self.probs = probs
|
|
|
|
|
|
|
|
def cpu(self):
|
|
|
|
r = self.new()
|
|
|
|
for k in self.keys:
|
|
|
|
setattr(r, k, getattr(self, k).cpu())
|
|
|
|
return r
|
|
|
|
|
|
|
|
def numpy(self):
|
|
|
|
r = self.new()
|
|
|
|
for k in self.keys:
|
|
|
|
setattr(r, k, getattr(self, k).numpy())
|
|
|
|
return r
|
|
|
|
|
|
|
|
def cuda(self):
|
|
|
|
r = self.new()
|
|
|
|
for k in self.keys:
|
|
|
|
setattr(r, k, getattr(self, k).cuda())
|
|
|
|
return r
|
|
|
|
|
|
|
|
def to(self, *args, **kwargs):
|
|
|
|
r = self.new()
|
|
|
|
for k in self.keys:
|
|
|
|
setattr(r, k, getattr(self, k).to(*args, **kwargs))
|
|
|
|
return r
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
for k in self.keys:
|
|
|
|
return len(getattr(self, k))
|
|
|
|
|
|
|
|
def new(self):
|
|
|
|
return Results(orig_img=self.orig_img, path=self.path, names=self.names)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def keys(self):
|
|
|
|
return [k for k in self._keys if getattr(self, k) is not None]
|
|
|
|
|
|
|
|
def plot(
|
|
|
|
self,
|
|
|
|
conf=True,
|
|
|
|
line_width=None,
|
|
|
|
font_size=None,
|
|
|
|
font='Arial.ttf',
|
|
|
|
pil=False,
|
|
|
|
example='abc',
|
|
|
|
img=None,
|
|
|
|
img_gpu=None,
|
|
|
|
kpt_line=True,
|
|
|
|
labels=True,
|
|
|
|
boxes=True,
|
|
|
|
masks=True,
|
|
|
|
probs=True,
|
|
|
|
**kwargs # deprecated args TODO: remove support in 8.2
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
Plots the detection results on an input RGB image. Accepts a numpy array (cv2) or a PIL Image.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
conf (bool): Whether to plot the detection confidence score.
|
|
|
|
line_width (float, optional): The line width of the bounding boxes. If None, it is scaled to the image size.
|
|
|
|
font_size (float, optional): The font size of the text. If None, it is scaled to the image size.
|
|
|
|
font (str): The font to use for the text.
|
|
|
|
pil (bool): Whether to return the image as a PIL Image.
|
|
|
|
example (str): An example string to display. Useful for indicating the expected format of the output.
|
|
|
|
img (numpy.ndarray): Plot to another image. if not, plot to original image.
|
|
|
|
img_gpu (torch.Tensor): Normalized image in gpu with shape (1, 3, 640, 640), for faster mask plotting.
|
|
|
|
kpt_line (bool): Whether to draw lines connecting keypoints.
|
|
|
|
labels (bool): Whether to plot the label of bounding boxes.
|
|
|
|
boxes (bool): Whether to plot the bounding boxes.
|
|
|
|
masks (bool): Whether to plot the masks.
|
|
|
|
probs (bool): Whether to plot classification probability
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(numpy.ndarray): A numpy array of the annotated image.
|
|
|
|
"""
|
|
|
|
# Deprecation warn TODO: remove in 8.2
|
|
|
|
if 'show_conf' in kwargs:
|
|
|
|
deprecation_warn('show_conf', 'conf')
|
|
|
|
conf = kwargs['show_conf']
|
|
|
|
assert type(conf) == bool, '`show_conf` should be of boolean type, i.e, show_conf=True/False'
|
|
|
|
|
|
|
|
annotator = Annotator(deepcopy(self.orig_img if img is None else img), line_width, font_size, font, pil,
|
|
|
|
example)
|
|
|
|
pred_boxes, show_boxes = self.boxes, boxes
|
|
|
|
pred_masks, show_masks = self.masks, masks
|
|
|
|
pred_probs, show_probs = self.probs, probs
|
|
|
|
names = self.names
|
|
|
|
keypoints = self.keypoints
|
|
|
|
if pred_masks and show_masks:
|
|
|
|
if img_gpu is None:
|
|
|
|
img = LetterBox(pred_masks.shape[1:])(image=annotator.result())
|
|
|
|
img_gpu = torch.as_tensor(img, dtype=torch.float16, device=pred_masks.masks.device).permute(
|
|
|
|
2, 0, 1).flip(0).contiguous() / 255
|
|
|
|
annotator.masks(pred_masks.data, colors=[colors(x, True) for x in pred_boxes.cls], im_gpu=img_gpu)
|
|
|
|
|
|
|
|
if pred_boxes and show_boxes:
|
|
|
|
for d in reversed(pred_boxes):
|
|
|
|
c, conf, id = int(d.cls), float(d.conf) if conf else None, None if d.id is None else int(d.id.item())
|
|
|
|
name = ('' if id is None else f'id:{id} ') + names[c]
|
|
|
|
label = (f'{name} {conf:.2f}' if conf else name) if labels else None
|
|
|
|
annotator.box_label(d.xyxy.squeeze(), label, color=colors(c, True))
|
|
|
|
|
|
|
|
if pred_probs is not None and show_probs:
|
|
|
|
n5 = min(len(names), 5)
|
|
|
|
top5i = pred_probs.argsort(0, descending=True)[:n5].tolist() # top 5 indices
|
|
|
|
text = f"{', '.join(f'{names[j] if names else j} {pred_probs[j]:.2f}' for j in top5i)}, "
|
|
|
|
annotator.text((32, 32), text, txt_color=(255, 255, 255)) # TODO: allow setting colors
|
|
|
|
|
|
|
|
if keypoints is not None:
|
|
|
|
for k in reversed(keypoints):
|
|
|
|
annotator.kpts(k, self.orig_shape, kpt_line=kpt_line)
|
|
|
|
|
|
|
|
return annotator.result()
|
|
|
|
|
|
|
|
|
|
|
|
class Boxes(BaseTensor):
|
|
|
|
"""
|
|
|
|
A class for storing and manipulating detection boxes.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes,
|
|
|
|
with shape (num_boxes, 6). The last two columns should contain confidence and class values.
|
|
|
|
orig_shape (tuple): Original image size, in the format (height, width).
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes,
|
|
|
|
with shape (num_boxes, 6).
|
|
|
|
orig_shape (torch.Tensor) or (numpy.ndarray): Original image size, in the format (height, width).
|
|
|
|
is_track (bool): True if the boxes also include track IDs, False otherwise.
|
|
|
|
|
|
|
|
Properties:
|
|
|
|
xyxy (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format.
|
|
|
|
conf (torch.Tensor) or (numpy.ndarray): The confidence values of the boxes.
|
|
|
|
cls (torch.Tensor) or (numpy.ndarray): The class values of the boxes.
|
|
|
|
id (torch.Tensor) or (numpy.ndarray): The track IDs of the boxes (if available).
|
|
|
|
xywh (torch.Tensor) or (numpy.ndarray): The boxes in xywh format.
|
|
|
|
xyxyn (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format normalized by original image size.
|
|
|
|
xywhn (torch.Tensor) or (numpy.ndarray): The boxes in xywh format normalized by original image size.
|
|
|
|
data (torch.Tensor): The raw bboxes tensor
|
|
|
|
|
|
|
|
Methods:
|
|
|
|
cpu(): Move the object to CPU memory.
|
|
|
|
numpy(): Convert the object to a numpy array.
|
|
|
|
cuda(): Move the object to CUDA memory.
|
|
|
|
to(*args, **kwargs): Move the object to the specified device.
|
|
|
|
pandas(): Convert the object to a pandas DataFrame (not yet implemented).
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, boxes, orig_shape) -> None:
|
|
|
|
if boxes.ndim == 1:
|
|
|
|
boxes = boxes[None, :]
|
|
|
|
n = boxes.shape[-1]
|
|
|
|
assert n in (6, 7), f'expected `n` in [6, 7], but got {n}' # xyxy, (track_id), conf, cls
|
|
|
|
# TODO
|
|
|
|
self.is_track = n == 7
|
|
|
|
self.boxes = boxes
|
|
|
|
self.orig_shape = torch.as_tensor(orig_shape, device=boxes.device) if isinstance(boxes, torch.Tensor) \
|
|
|
|
else np.asarray(orig_shape)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def xyxy(self):
|
|
|
|
return self.boxes[:, :4]
|
|
|
|
|
|
|
|
@property
|
|
|
|
def conf(self):
|
|
|
|
return self.boxes[:, -2]
|
|
|
|
|
|
|
|
@property
|
|
|
|
def cls(self):
|
|
|
|
return self.boxes[:, -1]
|
|
|
|
|
|
|
|
@property
|
|
|
|
def id(self):
|
|
|
|
return self.boxes[:, -3] if self.is_track else None
|
|
|
|
|
|
|
|
@property
|
|
|
|
@lru_cache(maxsize=2) # maxsize 1 should suffice
|
|
|
|
def xywh(self):
|
|
|
|
return ops.xyxy2xywh(self.xyxy)
|
|
|
|
|
|
|
|
@property
|
|
|
|
@lru_cache(maxsize=2)
|
|
|
|
def xyxyn(self):
|
|
|
|
return self.xyxy / self.orig_shape[[1, 0, 1, 0]]
|
|
|
|
|
|
|
|
@property
|
|
|
|
@lru_cache(maxsize=2)
|
|
|
|
def xywhn(self):
|
|
|
|
return self.xywh / self.orig_shape[[1, 0, 1, 0]]
|
|
|
|
|
|
|
|
def pandas(self):
|
|
|
|
LOGGER.info('results.pandas() method not yet implemented')
|
|
|
|
|
|
|
|
@property
|
|
|
|
def data(self):
|
|
|
|
return self.boxes
|
|
|
|
|
|
|
|
|
|
|
|
class Masks(BaseTensor):
|
|
|
|
"""
|
|
|
|
A class for storing and manipulating detection masks.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
masks (torch.Tensor): A tensor containing the detection masks, with shape (num_masks, height, width).
|
|
|
|
orig_shape (tuple): Original image size, in the format (height, width).
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
masks (torch.Tensor): A tensor containing the detection masks, with shape (num_masks, height, width).
|
|
|
|
orig_shape (tuple): Original image size, in the format (height, width).
|
|
|
|
|
|
|
|
Properties:
|
|
|
|
xy (list): A list of segments (pixels) which includes x, y segments of each detection.
|
|
|
|
xyn (list): A list of segments (normalized) which includes x, y segments of each detection.
|
|
|
|
|
|
|
|
Methods:
|
|
|
|
cpu(): Returns a copy of the masks tensor on CPU memory.
|
|
|
|
numpy(): Returns a copy of the masks tensor as a numpy array.
|
|
|
|
cuda(): Returns a copy of the masks tensor on GPU memory.
|
|
|
|
to(): Returns a copy of the masks tensor with the specified device and dtype.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, masks, orig_shape) -> None:
|
|
|
|
self.masks = masks # N, h, w
|
|
|
|
self.orig_shape = orig_shape
|
|
|
|
|
|
|
|
@property
|
|
|
|
@lru_cache(maxsize=1)
|
|
|
|
def segments(self):
|
|
|
|
# Segments-deprecated (normalized)
|
|
|
|
LOGGER.warning("WARNING ⚠️ 'Masks.segments' is deprecated. Use 'Masks.xyn' for segments (normalized) and "
|
|
|
|
"'Masks.xy' for segments (pixels) instead.")
|
|
|
|
return self.xyn
|
|
|
|
|
|
|
|
@property
|
|
|
|
@lru_cache(maxsize=1)
|
|
|
|
def xyn(self):
|
|
|
|
# Segments (normalized)
|
|
|
|
return [
|
|
|
|
ops.scale_coords(self.masks.shape[1:], x, self.orig_shape, normalize=True)
|
|
|
|
for x in ops.masks2segments(self.masks)]
|
|
|
|
|
|
|
|
@property
|
|
|
|
@lru_cache(maxsize=1)
|
|
|
|
def xy(self):
|
|
|
|
# Segments (pixels)
|
|
|
|
return [
|
|
|
|
ops.scale_coords(self.masks.shape[1:], x, self.orig_shape, normalize=False)
|
|
|
|
for x in ops.masks2segments(self.masks)]
|
|
|
|
|
|
|
|
@property
|
|
|
|
def data(self):
|
|
|
|
return self.masks
|