|
|
|
import logging
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from omegaconf import OmegaConf
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
|
|
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
|
|
|
|
from ultralytics.yolo.utils import TQDM_BAR_FORMAT
|
|
|
|
from ultralytics.yolo.utils.ops import Profile
|
|
|
|
from ultralytics.yolo.utils.torch_utils import de_parallel, select_device
|
|
|
|
|
|
|
|
|
|
|
|
class BaseValidator:
|
|
|
|
"""
|
|
|
|
Base validator class.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, dataloader, pbar=None, logger=None, args=None):
|
|
|
|
self.dataloader = dataloader
|
|
|
|
self.pbar = pbar
|
|
|
|
self.logger = logger or logging.getLogger()
|
|
|
|
self.args = args or OmegaConf.load(DEFAULT_CONFIG)
|
|
|
|
self.device = select_device(self.args.device, dataloader.batch_size)
|
|
|
|
self.cuda = self.device.type != 'cpu'
|
|
|
|
self.batch_i = None
|
|
|
|
self.training = True
|
|
|
|
self.loss = None
|
|
|
|
|
|
|
|
def __call__(self, trainer=None, model=None):
|
|
|
|
"""
|
|
|
|
Supports validation of a pre-trained model if passed or a model being trained
|
|
|
|
if trainer is passed (trainer gets priority).
|
|
|
|
"""
|
|
|
|
self.training = trainer is not None
|
|
|
|
if self.training:
|
|
|
|
model = trainer.ema.ema or trainer.model
|
|
|
|
self.args.half &= self.device.type != 'cpu'
|
|
|
|
# NOTE: half() inference in evaluation will make training stuck,
|
|
|
|
# so I comment it out for now, I think we can reuse half mode after we add EMA.
|
|
|
|
model = model.half() if self.args.half else model.float()
|
|
|
|
else: # TODO: handle this when detectMultiBackend is supported
|
|
|
|
assert model is not None, "Either trainer or model is needed for validation"
|
|
|
|
# model = DetectMultiBacked(model)
|
|
|
|
|
|
|
|
model.eval()
|
|
|
|
dt = Profile(), Profile(), Profile(), Profile()
|
|
|
|
self.loss = 0
|
|
|
|
n_batches = len(self.dataloader)
|
|
|
|
desc = self.get_desc()
|
|
|
|
bar = tqdm(self.dataloader, desc, n_batches, not self.training, bar_format=TQDM_BAR_FORMAT)
|
|
|
|
self.init_metrics(de_parallel(model))
|
|
|
|
with torch.no_grad():
|
|
|
|
for batch_i, batch in enumerate(bar):
|
|
|
|
self.batch_i = batch_i
|
|
|
|
# pre-process
|
|
|
|
with dt[0]:
|
|
|
|
batch = self.preprocess(batch)
|
|
|
|
|
|
|
|
# inference
|
|
|
|
with dt[1]:
|
|
|
|
preds = model(batch["img"].float())
|
|
|
|
# TODO: remember to add native augmentation support when implementing model, like:
|
|
|
|
# preds, train_out = model(im, augment=augment)
|
|
|
|
|
|
|
|
# loss
|
|
|
|
with dt[2]:
|
|
|
|
if self.training:
|
|
|
|
self.loss += trainer.criterion(preds, batch)[0]
|
|
|
|
|
|
|
|
# pre-process predictions
|
|
|
|
with dt[3]:
|
|
|
|
preds = self.postprocess(preds)
|
|
|
|
|
|
|
|
self.update_metrics(preds, batch)
|
|
|
|
|
|
|
|
stats = self.get_stats()
|
|
|
|
self.check_stats(stats)
|
|
|
|
|
|
|
|
self.print_results()
|
|
|
|
|
|
|
|
# print speeds
|
|
|
|
if not self.training:
|
|
|
|
t = tuple(x.t / len(self.dataloader.dataset.samples) * 1E3 for x in dt) # speeds per image
|
|
|
|
# shape = (self.dataloader.batch_size, 3, imgsz, imgsz)
|
|
|
|
self.logger.info(
|
|
|
|
'Speed: %.1fms pre-process, %.1fms inference, %.1fms loss, %.1fms post-process per image at shape ' % t)
|
|
|
|
|
|
|
|
if self.training:
|
|
|
|
model.float()
|
|
|
|
# TODO: implement save json
|
|
|
|
|
|
|
|
return stats
|
|
|
|
|
|
|
|
def preprocess(self, batch):
|
|
|
|
return batch
|
|
|
|
|
|
|
|
def postprocess(self, preds):
|
|
|
|
return preds
|
|
|
|
|
|
|
|
def init_metrics(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def update_metrics(self, preds, batch):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def get_stats(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def check_stats(self, stats):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def print_results(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def get_desc(self):
|
|
|
|
pass
|