|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
"""
|
|
|
|
Model validation metrics
|
|
|
|
"""
|
|
|
|
import math
|
|
|
|
import warnings
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
|
|
|
|
from ultralytics.yolo.utils import LOGGER, SimpleClass, TryExcept, plt_settings
|
|
|
|
|
|
|
|
OKS_SIGMA = np.array([.26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89]) / 10.0
|
|
|
|
|
|
|
|
|
|
|
|
# boxes
|
|
|
|
def box_area(box):
|
|
|
|
# box = xyxy(4,n)
|
|
|
|
return (box[2] - box[0]) * (box[3] - box[1])
|
|
|
|
|
|
|
|
|
|
|
|
def bbox_ioa(box1, box2, eps=1e-7):
|
|
|
|
"""Returns the intersection over box2 area given box1, box2. Boxes are x1y1x2y2
|
|
|
|
box1: np.array of shape(nx4)
|
|
|
|
box2: np.array of shape(mx4)
|
|
|
|
returns: np.array of shape(nxm)
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Get the coordinates of bounding boxes
|
|
|
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1.T
|
|
|
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2.T
|
|
|
|
|
|
|
|
# Intersection area
|
|
|
|
inter_area = (np.minimum(b1_x2[:, None], b2_x2) - np.maximum(b1_x1[:, None], b2_x1)).clip(0) * \
|
|
|
|
(np.minimum(b1_y2[:, None], b2_y2) - np.maximum(b1_y1[:, None], b2_y1)).clip(0)
|
|
|
|
|
|
|
|
# box2 area
|
|
|
|
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps
|
|
|
|
|
|
|
|
# Intersection over box2 area
|
|
|
|
return inter_area / box2_area
|
|
|
|
|
|
|
|
|
|
|
|
def box_iou(box1, box2, eps=1e-7):
|
|
|
|
"""
|
|
|
|
Return intersection-over-union (Jaccard index) of boxes.
|
|
|
|
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
|
|
|
Based on https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
box1 (Tensor[N, 4])
|
|
|
|
box2 (Tensor[M, 4])
|
|
|
|
eps
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
iou (Tensor[N, M]): the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2
|
|
|
|
"""
|
|
|
|
|
|
|
|
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
|
|
|
|
(a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
|
|
|
|
inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)
|
|
|
|
|
|
|
|
# IoU = inter / (area1 + area2 - inter)
|
|
|
|
return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)
|
|
|
|
|
|
|
|
|
|
|
|
def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
|
|
|
|
# Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)
|
|
|
|
|
|
|
|
# Get the coordinates of bounding boxes
|
|
|
|
if xywh: # transform from xywh to xyxy
|
|
|
|
(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
|
|
|
|
w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
|
|
|
|
b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
|
|
|
|
b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
|
|
|
|
else: # x1, y1, x2, y2 = box1
|
|
|
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
|
|
|
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
|
|
|
|
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
|
|
|
|
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
|
|
|
|
|
|
|
|
# Intersection area
|
|
|
|
inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \
|
|
|
|
(b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)
|
|
|
|
|
|
|
|
# Union Area
|
|
|
|
union = w1 * h1 + w2 * h2 - inter + eps
|
|
|
|
|
|
|
|
# IoU
|
|
|
|
iou = inter / union
|
|
|
|
if CIoU or DIoU or GIoU:
|
|
|
|
cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width
|
|
|
|
ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height
|
|
|
|
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
|
|
|
|
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
|
|
|
|
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2
|
|
|
|
if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
|
|
|
|
v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
|
|
|
|
with torch.no_grad():
|
|
|
|
alpha = v / (v - iou + (1 + eps))
|
|
|
|
return iou - (rho2 / c2 + v * alpha) # CIoU
|
|
|
|
return iou - rho2 / c2 # DIoU
|
|
|
|
c_area = cw * ch + eps # convex area
|
|
|
|
return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf
|
|
|
|
return iou # IoU
|
|
|
|
|
|
|
|
|
|
|
|
def mask_iou(mask1, mask2, eps=1e-7):
|
|
|
|
"""
|
|
|
|
mask1: [N, n] m1 means number of gt objects
|
|
|
|
mask2: [M, n] m2 means number of predicted objects
|
|
|
|
Note: n means image_w x image_h
|
|
|
|
Returns: masks iou, [N, M]
|
|
|
|
"""
|
|
|
|
intersection = torch.matmul(mask1, mask2.t()).clamp(0)
|
|
|
|
union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection # (area1 + area2) - intersection
|
|
|
|
return intersection / (union + eps)
|
|
|
|
|
|
|
|
|
|
|
|
def kpt_iou(kpt1, kpt2, area, sigma, eps=1e-7):
|
|
|
|
"""OKS
|
|
|
|
kpt1: [N, 17, 3], gt
|
|
|
|
kpt2: [M, 17, 3], pred
|
|
|
|
area: [N], areas from gt
|
|
|
|
"""
|
|
|
|
d = (kpt1[:, None, :, 0] - kpt2[..., 0]) ** 2 + (kpt1[:, None, :, 1] - kpt2[..., 1]) ** 2 # (N, M, 17)
|
|
|
|
sigma = torch.tensor(sigma, device=kpt1.device, dtype=kpt1.dtype) # (17, )
|
|
|
|
kpt_mask = kpt1[..., 2] != 0 # (N, 17)
|
|
|
|
e = d / (2 * sigma) ** 2 / (area[:, None, None] + eps) / 2 # from cocoeval
|
|
|
|
# e = d / ((area[None, :, None] + eps) * sigma) ** 2 / 2 # from formula
|
|
|
|
return (torch.exp(-e) * kpt_mask[:, None]).sum(-1) / (kpt_mask.sum(-1)[:, None] + eps)
|
|
|
|
|
|
|
|
|
|
|
|
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
|
|
|
|
# return positive, negative label smoothing BCE targets
|
|
|
|
return 1.0 - 0.5 * eps, 0.5 * eps
|
|
|
|
|
|
|
|
|
|
|
|
# losses
|
|
|
|
class FocalLoss(nn.Module):
|
|
|
|
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
|
|
|
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
|
|
|
super().__init__()
|
|
|
|
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
|
|
|
self.gamma = gamma
|
|
|
|
self.alpha = alpha
|
|
|
|
self.reduction = loss_fcn.reduction
|
|
|
|
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
|
|
|
|
|
|
|
def forward(self, pred, true):
|
|
|
|
loss = self.loss_fcn(pred, true)
|
|
|
|
# p_t = torch.exp(-loss)
|
|
|
|
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
|
|
|
|
|
|
|
|
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
|
|
|
|
pred_prob = torch.sigmoid(pred) # prob from logits
|
|
|
|
p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
|
|
|
|
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
|
|
|
modulating_factor = (1.0 - p_t) ** self.gamma
|
|
|
|
loss *= alpha_factor * modulating_factor
|
|
|
|
|
|
|
|
if self.reduction == 'mean':
|
|
|
|
return loss.mean()
|
|
|
|
elif self.reduction == 'sum':
|
|
|
|
return loss.sum()
|
|
|
|
else: # 'none'
|
|
|
|
return loss
|
|
|
|
|
|
|
|
|
|
|
|
class ConfusionMatrix:
|
|
|
|
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
|
|
|
|
def __init__(self, nc, conf=0.25, iou_thres=0.45, task='detect'):
|
|
|
|
self.task = task
|
|
|
|
self.matrix = np.zeros((nc + 1, nc + 1)) if self.task == 'detect' else np.zeros((nc, nc))
|
|
|
|
self.nc = nc # number of classes
|
|
|
|
self.conf = conf
|
|
|
|
self.iou_thres = iou_thres
|
|
|
|
|
|
|
|
def process_cls_preds(self, preds, targets):
|
|
|
|
"""
|
|
|
|
Update confusion matrix for classification task
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
preds (Array[N, min(nc,5)])
|
|
|
|
targets (Array[N, 1])
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
None, updates confusion matrix accordingly
|
|
|
|
"""
|
|
|
|
preds, targets = torch.cat(preds)[:, 0], torch.cat(targets)
|
|
|
|
for p, t in zip(preds.cpu().numpy(), targets.cpu().numpy()):
|
|
|
|
self.matrix[t][p] += 1
|
|
|
|
|
|
|
|
def process_batch(self, detections, labels):
|
|
|
|
"""
|
|
|
|
Return intersection-over-union (Jaccard index) of boxes.
|
|
|
|
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
|
|
|
|
labels (Array[M, 5]), class, x1, y1, x2, y2
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
None, updates confusion matrix accordingly
|
|
|
|
"""
|
|
|
|
if detections is None:
|
|
|
|
gt_classes = labels.int()
|
|
|
|
for gc in gt_classes:
|
|
|
|
self.matrix[self.nc, gc] += 1 # background FN
|
|
|
|
return
|
|
|
|
|
|
|
|
detections = detections[detections[:, 4] > self.conf]
|
|
|
|
gt_classes = labels[:, 0].int()
|
|
|
|
detection_classes = detections[:, 5].int()
|
|
|
|
iou = box_iou(labels[:, 1:], detections[:, :4])
|
|
|
|
|
|
|
|
x = torch.where(iou > self.iou_thres)
|
|
|
|
if x[0].shape[0]:
|
|
|
|
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
|
|
|
|
if x[0].shape[0] > 1:
|
|
|
|
matches = matches[matches[:, 2].argsort()[::-1]]
|
|
|
|
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
|
|
|
matches = matches[matches[:, 2].argsort()[::-1]]
|
|
|
|
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
|
|
|
else:
|
|
|
|
matches = np.zeros((0, 3))
|
|
|
|
|
|
|
|
n = matches.shape[0] > 0
|
|
|
|
m0, m1, _ = matches.transpose().astype(int)
|
|
|
|
for i, gc in enumerate(gt_classes):
|
|
|
|
j = m0 == i
|
|
|
|
if n and sum(j) == 1:
|
|
|
|
self.matrix[detection_classes[m1[j]], gc] += 1 # correct
|
|
|
|
else:
|
|
|
|
self.matrix[self.nc, gc] += 1 # true background
|
|
|
|
|
|
|
|
if n:
|
|
|
|
for i, dc in enumerate(detection_classes):
|
|
|
|
if not any(m1 == i):
|
|
|
|
self.matrix[dc, self.nc] += 1 # predicted background
|
|
|
|
|
|
|
|
def matrix(self):
|
|
|
|
return self.matrix
|
|
|
|
|
|
|
|
def tp_fp(self):
|
|
|
|
tp = self.matrix.diagonal() # true positives
|
|
|
|
fp = self.matrix.sum(1) - tp # false positives
|
|
|
|
# fn = self.matrix.sum(0) - tp # false negatives (missed detections)
|
|
|
|
return (tp[:-1], fp[:-1]) if self.task == 'detect' else (tp, fp) # remove background class if task=detect
|
|
|
|
|
|
|
|
@TryExcept('WARNING ⚠️ ConfusionMatrix plot failure')
|
|
|
|
@plt_settings()
|
|
|
|
def plot(self, normalize=True, save_dir='', names=()):
|
|
|
|
import seaborn as sn
|
|
|
|
|
|
|
|
array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1) # normalize columns
|
|
|
|
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
|
|
|
|
|
|
|
|
fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True)
|
|
|
|
nc, nn = self.nc, len(names) # number of classes, names
|
|
|
|
sn.set(font_scale=1.0 if nc < 50 else 0.8) # for label size
|
|
|
|
labels = (0 < nn < 99) and (nn == nc) # apply names to ticklabels
|
|
|
|
ticklabels = (names + ['background']) if labels else 'auto'
|
|
|
|
with warnings.catch_warnings():
|
|
|
|
warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered
|
|
|
|
sn.heatmap(array,
|
|
|
|
ax=ax,
|
|
|
|
annot=nc < 30,
|
|
|
|
annot_kws={
|
|
|
|
'size': 8},
|
|
|
|
cmap='Blues',
|
|
|
|
fmt='.2f',
|
|
|
|
square=True,
|
|
|
|
vmin=0.0,
|
|
|
|
xticklabels=ticklabels,
|
|
|
|
yticklabels=ticklabels).set_facecolor((1, 1, 1))
|
|
|
|
ax.set_xlabel('True')
|
|
|
|
ax.set_ylabel('Predicted')
|
|
|
|
ax.set_title('Confusion Matrix')
|
|
|
|
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
|
|
|
|
plt.close(fig)
|
|
|
|
|
|
|
|
def print(self):
|
|
|
|
for i in range(self.nc + 1):
|
|
|
|
LOGGER.info(' '.join(map(str, self.matrix[i])))
|
|
|
|
|
|
|
|
|
|
|
|
def smooth(y, f=0.05):
|
|
|
|
# Box filter of fraction f
|
|
|
|
nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd)
|
|
|
|
p = np.ones(nf // 2) # ones padding
|
|
|
|
yp = np.concatenate((p * y[0], y, p * y[-1]), 0) # y padded
|
|
|
|
return np.convolve(yp, np.ones(nf) / nf, mode='valid') # y-smoothed
|
|
|
|
|
|
|
|
|
|
|
|
@plt_settings()
|
|
|
|
def plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=()):
|
|
|
|
# Precision-recall curve
|
|
|
|
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
|
|
|
|
py = np.stack(py, axis=1)
|
|
|
|
|
|
|
|
if 0 < len(names) < 21: # display per-class legend if < 21 classes
|
|
|
|
for i, y in enumerate(py.T):
|
|
|
|
ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
|
|
|
|
else:
|
|
|
|
ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
|
|
|
|
|
|
|
|
ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
|
|
|
|
ax.set_xlabel('Recall')
|
|
|
|
ax.set_ylabel('Precision')
|
|
|
|
ax.set_xlim(0, 1)
|
|
|
|
ax.set_ylim(0, 1)
|
|
|
|
ax.legend(bbox_to_anchor=(1.04, 1), loc='upper left')
|
|
|
|
ax.set_title('Precision-Recall Curve')
|
|
|
|
fig.savefig(save_dir, dpi=250)
|
|
|
|
plt.close(fig)
|
|
|
|
|
|
|
|
|
|
|
|
@plt_settings()
|
|
|
|
def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confidence', ylabel='Metric'):
|
|
|
|
# Metric-confidence curve
|
|
|
|
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
|
|
|
|
|
|
|
|
if 0 < len(names) < 21: # display per-class legend if < 21 classes
|
|
|
|
for i, y in enumerate(py):
|
|
|
|
ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
|
|
|
|
else:
|
|
|
|
ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
|
|
|
|
|
|
|
|
y = smooth(py.mean(0), 0.05)
|
|
|
|
ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
|
|
|
|
ax.set_xlabel(xlabel)
|
|
|
|
ax.set_ylabel(ylabel)
|
|
|
|
ax.set_xlim(0, 1)
|
|
|
|
ax.set_ylim(0, 1)
|
|
|
|
ax.legend(bbox_to_anchor=(1.04, 1), loc='upper left')
|
|
|
|
ax.set_title(f'{ylabel}-Confidence Curve')
|
|
|
|
fig.savefig(save_dir, dpi=250)
|
|
|
|
plt.close(fig)
|
|
|
|
|
|
|
|
|
|
|
|
def compute_ap(recall, precision):
|
|
|
|
""" Compute the average precision, given the recall and precision curves
|
|
|
|
Arguments:
|
|
|
|
recall: The recall curve (list)
|
|
|
|
precision: The precision curve (list)
|
|
|
|
Returns:
|
|
|
|
Average precision, precision curve, recall curve
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Append sentinel values to beginning and end
|
|
|
|
mrec = np.concatenate(([0.0], recall, [1.0]))
|
|
|
|
mpre = np.concatenate(([1.0], precision, [0.0]))
|
|
|
|
|
|
|
|
# Compute the precision envelope
|
|
|
|
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
|
|
|
|
|
|
|
|
# Integrate area under curve
|
|
|
|
method = 'interp' # methods: 'continuous', 'interp'
|
|
|
|
if method == 'interp':
|
|
|
|
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
|
|
|
|
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
|
|
|
|
else: # 'continuous'
|
|
|
|
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x-axis (recall) changes
|
|
|
|
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
|
|
|
|
|
|
|
|
return ap, mpre, mrec
|
|
|
|
|
|
|
|
|
|
|
|
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir=Path(), names=(), eps=1e-16, prefix=''):
|
|
|
|
"""
|
|
|
|
Computes the average precision per class for object detection evaluation.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
tp (np.ndarray): Binary array indicating whether the detection is correct (True) or not (False).
|
|
|
|
conf (np.ndarray): Array of confidence scores of the detections.
|
|
|
|
pred_cls (np.ndarray): Array of predicted classes of the detections.
|
|
|
|
target_cls (np.ndarray): Array of true classes of the detections.
|
|
|
|
plot (bool, optional): Whether to plot PR curves or not. Defaults to False.
|
|
|
|
save_dir (Path, optional): Directory to save the PR curves. Defaults to an empty path.
|
|
|
|
names (tuple, optional): Tuple of class names to plot PR curves. Defaults to an empty tuple.
|
|
|
|
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-16.
|
|
|
|
prefix (str, optional): A prefix string for saving the plot files. Defaults to an empty string.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
(tuple): A tuple of six arrays and one array of unique classes, where:
|
|
|
|
tp (np.ndarray): True positive counts for each class.
|
|
|
|
fp (np.ndarray): False positive counts for each class.
|
|
|
|
p (np.ndarray): Precision values at each confidence threshold.
|
|
|
|
r (np.ndarray): Recall values at each confidence threshold.
|
|
|
|
f1 (np.ndarray): F1-score values at each confidence threshold.
|
|
|
|
ap (np.ndarray): Average precision for each class at different IoU thresholds.
|
|
|
|
unique_classes (np.ndarray): An array of unique classes that have data.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Sort by objectness
|
|
|
|
i = np.argsort(-conf)
|
|
|
|
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
|
|
|
|
|
|
|
|
# Find unique classes
|
|
|
|
unique_classes, nt = np.unique(target_cls, return_counts=True)
|
|
|
|
nc = unique_classes.shape[0] # number of classes, number of detections
|
|
|
|
|
|
|
|
# Create Precision-Recall curve and compute AP for each class
|
|
|
|
px, py = np.linspace(0, 1, 1000), [] # for plotting
|
|
|
|
ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
|
|
|
|
for ci, c in enumerate(unique_classes):
|
|
|
|
i = pred_cls == c
|
|
|
|
n_l = nt[ci] # number of labels
|
|
|
|
n_p = i.sum() # number of predictions
|
|
|
|
if n_p == 0 or n_l == 0:
|
|
|
|
continue
|
|
|
|
|
|
|
|
# Accumulate FPs and TPs
|
|
|
|
fpc = (1 - tp[i]).cumsum(0)
|
|
|
|
tpc = tp[i].cumsum(0)
|
|
|
|
|
|
|
|
# Recall
|
|
|
|
recall = tpc / (n_l + eps) # recall curve
|
|
|
|
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
|
|
|
|
|
|
|
|
# Precision
|
|
|
|
precision = tpc / (tpc + fpc) # precision curve
|
|
|
|
p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
|
|
|
|
|
|
|
|
# AP from recall-precision curve
|
|
|
|
for j in range(tp.shape[1]):
|
|
|
|
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
|
|
|
|
if plot and j == 0:
|
|
|
|
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
|
|
|
|
|
|
|
|
# Compute F1 (harmonic mean of precision and recall)
|
|
|
|
f1 = 2 * p * r / (p + r + eps)
|
|
|
|
names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data
|
|
|
|
names = dict(enumerate(names)) # to dict
|
|
|
|
if plot:
|
|
|
|
plot_pr_curve(px, py, ap, save_dir / f'{prefix}PR_curve.png', names)
|
|
|
|
plot_mc_curve(px, f1, save_dir / f'{prefix}F1_curve.png', names, ylabel='F1')
|
|
|
|
plot_mc_curve(px, p, save_dir / f'{prefix}P_curve.png', names, ylabel='Precision')
|
|
|
|
plot_mc_curve(px, r, save_dir / f'{prefix}R_curve.png', names, ylabel='Recall')
|
|
|
|
|
|
|
|
i = smooth(f1.mean(0), 0.1).argmax() # max F1 index
|
|
|
|
p, r, f1 = p[:, i], r[:, i], f1[:, i]
|
|
|
|
tp = (r * nt).round() # true positives
|
|
|
|
fp = (tp / (p + eps) - tp).round() # false positives
|
|
|
|
return tp, fp, p, r, f1, ap, unique_classes.astype(int)
|
|
|
|
|
|
|
|
|
|
|
|
class Metric(SimpleClass):
|
|
|
|
"""
|
|
|
|
Class for computing evaluation metrics for YOLOv8 model.
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
p (list): Precision for each class. Shape: (nc,).
|
|
|
|
r (list): Recall for each class. Shape: (nc,).
|
|
|
|
f1 (list): F1 score for each class. Shape: (nc,).
|
|
|
|
all_ap (list): AP scores for all classes and all IoU thresholds. Shape: (nc, 10).
|
|
|
|
ap_class_index (list): Index of class for each AP score. Shape: (nc,).
|
|
|
|
nc (int): Number of classes.
|
|
|
|
|
|
|
|
Methods:
|
|
|
|
ap50(): AP at IoU threshold of 0.5 for all classes. Returns: List of AP scores. Shape: (nc,) or [].
|
|
|
|
ap(): AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: List of AP scores. Shape: (nc,) or [].
|
|
|
|
mp(): Mean precision of all classes. Returns: Float.
|
|
|
|
mr(): Mean recall of all classes. Returns: Float.
|
|
|
|
map50(): Mean AP at IoU threshold of 0.5 for all classes. Returns: Float.
|
|
|
|
map75(): Mean AP at IoU threshold of 0.75 for all classes. Returns: Float.
|
|
|
|
map(): Mean AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: Float.
|
|
|
|
mean_results(): Mean of results, returns mp, mr, map50, map.
|
|
|
|
class_result(i): Class-aware result, returns p[i], r[i], ap50[i], ap[i].
|
|
|
|
maps(): mAP of each class. Returns: Array of mAP scores, shape: (nc,).
|
|
|
|
fitness(): Model fitness as a weighted combination of metrics. Returns: Float.
|
|
|
|
update(results): Update metric attributes with new evaluation results.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self) -> None:
|
|
|
|
self.p = [] # (nc, )
|
|
|
|
self.r = [] # (nc, )
|
|
|
|
self.f1 = [] # (nc, )
|
|
|
|
self.all_ap = [] # (nc, 10)
|
|
|
|
self.ap_class_index = [] # (nc, )
|
|
|
|
self.nc = 0
|
|
|
|
|
|
|
|
@property
|
|
|
|
def ap50(self):
|
|
|
|
"""AP@0.5 of all classes.
|
|
|
|
Returns:
|
|
|
|
(nc, ) or [].
|
|
|
|
"""
|
|
|
|
return self.all_ap[:, 0] if len(self.all_ap) else []
|
|
|
|
|
|
|
|
@property
|
|
|
|
def ap(self):
|
|
|
|
"""AP@0.5:0.95
|
|
|
|
Returns:
|
|
|
|
(nc, ) or [].
|
|
|
|
"""
|
|
|
|
return self.all_ap.mean(1) if len(self.all_ap) else []
|
|
|
|
|
|
|
|
@property
|
|
|
|
def mp(self):
|
|
|
|
"""mean precision of all classes.
|
|
|
|
Returns:
|
|
|
|
float.
|
|
|
|
"""
|
|
|
|
return self.p.mean() if len(self.p) else 0.0
|
|
|
|
|
|
|
|
@property
|
|
|
|
def mr(self):
|
|
|
|
"""mean recall of all classes.
|
|
|
|
Returns:
|
|
|
|
float.
|
|
|
|
"""
|
|
|
|
return self.r.mean() if len(self.r) else 0.0
|
|
|
|
|
|
|
|
@property
|
|
|
|
def map50(self):
|
|
|
|
"""Mean AP@0.5 of all classes.
|
|
|
|
Returns:
|
|
|
|
float.
|
|
|
|
"""
|
|
|
|
return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0
|
|
|
|
|
|
|
|
@property
|
|
|
|
def map75(self):
|
|
|
|
"""Mean AP@0.75 of all classes.
|
|
|
|
Returns:
|
|
|
|
float.
|
|
|
|
"""
|
|
|
|
return self.all_ap[:, 5].mean() if len(self.all_ap) else 0.0
|
|
|
|
|
|
|
|
@property
|
|
|
|
def map(self):
|
|
|
|
"""Mean AP@0.5:0.95 of all classes.
|
|
|
|
Returns:
|
|
|
|
float.
|
|
|
|
"""
|
|
|
|
return self.all_ap.mean() if len(self.all_ap) else 0.0
|
|
|
|
|
|
|
|
def mean_results(self):
|
|
|
|
"""Mean of results, return mp, mr, map50, map"""
|
|
|
|
return [self.mp, self.mr, self.map50, self.map]
|
|
|
|
|
|
|
|
def class_result(self, i):
|
|
|
|
"""class-aware result, return p[i], r[i], ap50[i], ap[i]"""
|
|
|
|
return self.p[i], self.r[i], self.ap50[i], self.ap[i]
|
|
|
|
|
|
|
|
@property
|
|
|
|
def maps(self):
|
|
|
|
"""mAP of each class"""
|
|
|
|
maps = np.zeros(self.nc) + self.map
|
|
|
|
for i, c in enumerate(self.ap_class_index):
|
|
|
|
maps[c] = self.ap[i]
|
|
|
|
return maps
|
|
|
|
|
|
|
|
def fitness(self):
|
|
|
|
# Model fitness as a weighted combination of metrics
|
|
|
|
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
|
|
|
|
return (np.array(self.mean_results()) * w).sum()
|
|
|
|
|
|
|
|
def update(self, results):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
results: tuple(p, r, ap, f1, ap_class)
|
|
|
|
"""
|
|
|
|
self.p, self.r, self.f1, self.all_ap, self.ap_class_index = results
|
|
|
|
|
|
|
|
|
|
|
|
class DetMetrics(SimpleClass):
|
|
|
|
"""
|
|
|
|
This class is a utility class for computing detection metrics such as precision, recall, and mean average precision
|
|
|
|
(mAP) of an object detection model.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
save_dir (Path): A path to the directory where the output plots will be saved. Defaults to current directory.
|
|
|
|
plot (bool): A flag that indicates whether to plot precision-recall curves for each class. Defaults to False.
|
|
|
|
names (tuple of str): A tuple of strings that represents the names of the classes. Defaults to an empty tuple.
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
save_dir (Path): A path to the directory where the output plots will be saved.
|
|
|
|
plot (bool): A flag that indicates whether to plot the precision-recall curves for each class.
|
|
|
|
names (tuple of str): A tuple of strings that represents the names of the classes.
|
|
|
|
box (Metric): An instance of the Metric class for storing the results of the detection metrics.
|
|
|
|
speed (dict): A dictionary for storing the execution time of different parts of the detection process.
|
|
|
|
|
|
|
|
Methods:
|
|
|
|
process(tp, conf, pred_cls, target_cls): Updates the metric results with the latest batch of predictions.
|
|
|
|
keys: Returns a list of keys for accessing the computed detection metrics.
|
|
|
|
mean_results: Returns a list of mean values for the computed detection metrics.
|
|
|
|
class_result(i): Returns a list of values for the computed detection metrics for a specific class.
|
|
|
|
maps: Returns a dictionary of mean average precision (mAP) values for different IoU thresholds.
|
|
|
|
fitness: Computes the fitness score based on the computed detection metrics.
|
|
|
|
ap_class_index: Returns a list of class indices sorted by their average precision (AP) values.
|
|
|
|
results_dict: Returns a dictionary that maps detection metric keys to their computed values.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, save_dir=Path('.'), plot=False, names=()) -> None:
|
|
|
|
self.save_dir = save_dir
|
|
|
|
self.plot = plot
|
|
|
|
self.names = names
|
|
|
|
self.box = Metric()
|
|
|
|
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
|
|
|
|
|
|
|
|
def process(self, tp, conf, pred_cls, target_cls):
|
|
|
|
results = ap_per_class(tp, conf, pred_cls, target_cls, plot=self.plot, save_dir=self.save_dir,
|
|
|
|
names=self.names)[2:]
|
|
|
|
self.box.nc = len(self.names)
|
|
|
|
self.box.update(results)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def keys(self):
|
|
|
|
return ['metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)']
|
|
|
|
|
|
|
|
def mean_results(self):
|
|
|
|
return self.box.mean_results()
|
|
|
|
|
|
|
|
def class_result(self, i):
|
|
|
|
return self.box.class_result(i)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def maps(self):
|
|
|
|
return self.box.maps
|
|
|
|
|
|
|
|
@property
|
|
|
|
def fitness(self):
|
|
|
|
return self.box.fitness()
|
|
|
|
|
|
|
|
@property
|
|
|
|
def ap_class_index(self):
|
|
|
|
return self.box.ap_class_index
|
|
|
|
|
|
|
|
@property
|
|
|
|
def results_dict(self):
|
|
|
|
return dict(zip(self.keys + ['fitness'], self.mean_results() + [self.fitness]))
|
|
|
|
|
|
|
|
|
|
|
|
class SegmentMetrics(SimpleClass):
|
|
|
|
"""
|
|
|
|
Calculates and aggregates detection and segmentation metrics over a given set of classes.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
save_dir (Path): Path to the directory where the output plots should be saved. Default is the current directory.
|
|
|
|
plot (bool): Whether to save the detection and segmentation plots. Default is False.
|
|
|
|
names (list): List of class names. Default is an empty list.
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
save_dir (Path): Path to the directory where the output plots should be saved.
|
|
|
|
plot (bool): Whether to save the detection and segmentation plots.
|
|
|
|
names (list): List of class names.
|
|
|
|
box (Metric): An instance of the Metric class to calculate box detection metrics.
|
|
|
|
seg (Metric): An instance of the Metric class to calculate mask segmentation metrics.
|
|
|
|
speed (dict): Dictionary to store the time taken in different phases of inference.
|
|
|
|
|
|
|
|
Methods:
|
|
|
|
process(tp_m, tp_b, conf, pred_cls, target_cls): Processes metrics over the given set of predictions.
|
|
|
|
mean_results(): Returns the mean of the detection and segmentation metrics over all the classes.
|
|
|
|
class_result(i): Returns the detection and segmentation metrics of class `i`.
|
|
|
|
maps: Returns the mean Average Precision (mAP) scores for IoU thresholds ranging from 0.50 to 0.95.
|
|
|
|
fitness: Returns the fitness scores, which are a single weighted combination of metrics.
|
|
|
|
ap_class_index: Returns the list of indices of classes used to compute Average Precision (AP).
|
|
|
|
results_dict: Returns the dictionary containing all the detection and segmentation metrics and fitness score.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, save_dir=Path('.'), plot=False, names=()) -> None:
|
|
|
|
self.save_dir = save_dir
|
|
|
|
self.plot = plot
|
|
|
|
self.names = names
|
|
|
|
self.box = Metric()
|
|
|
|
self.seg = Metric()
|
|
|
|
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
|
|
|
|
|
|
|
|
def process(self, tp_b, tp_m, conf, pred_cls, target_cls):
|
|
|
|
"""
|
|
|
|
Processes the detection and segmentation metrics over the given set of predictions.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
tp_b (list): List of True Positive boxes.
|
|
|
|
tp_m (list): List of True Positive masks.
|
|
|
|
conf (list): List of confidence scores.
|
|
|
|
pred_cls (list): List of predicted classes.
|
|
|
|
target_cls (list): List of target classes.
|
|
|
|
"""
|
|
|
|
|
|
|
|
results_mask = ap_per_class(tp_m,
|
|
|
|
conf,
|
|
|
|
pred_cls,
|
|
|
|
target_cls,
|
|
|
|
plot=self.plot,
|
|
|
|
save_dir=self.save_dir,
|
|
|
|
names=self.names,
|
|
|
|
prefix='Mask')[2:]
|
|
|
|
self.seg.nc = len(self.names)
|
|
|
|
self.seg.update(results_mask)
|
|
|
|
results_box = ap_per_class(tp_b,
|
|
|
|
conf,
|
|
|
|
pred_cls,
|
|
|
|
target_cls,
|
|
|
|
plot=self.plot,
|
|
|
|
save_dir=self.save_dir,
|
|
|
|
names=self.names,
|
|
|
|
prefix='Box')[2:]
|
|
|
|
self.box.nc = len(self.names)
|
|
|
|
self.box.update(results_box)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def keys(self):
|
|
|
|
return [
|
|
|
|
'metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)',
|
|
|
|
'metrics/precision(M)', 'metrics/recall(M)', 'metrics/mAP50(M)', 'metrics/mAP50-95(M)']
|
|
|
|
|
|
|
|
def mean_results(self):
|
|
|
|
return self.box.mean_results() + self.seg.mean_results()
|
|
|
|
|
|
|
|
def class_result(self, i):
|
|
|
|
return self.box.class_result(i) + self.seg.class_result(i)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def maps(self):
|
|
|
|
return self.box.maps + self.seg.maps
|
|
|
|
|
|
|
|
@property
|
|
|
|
def fitness(self):
|
|
|
|
return self.seg.fitness() + self.box.fitness()
|
|
|
|
|
|
|
|
@property
|
|
|
|
def ap_class_index(self):
|
|
|
|
# boxes and masks have the same ap_class_index
|
|
|
|
return self.box.ap_class_index
|
|
|
|
|
|
|
|
@property
|
|
|
|
def results_dict(self):
|
|
|
|
return dict(zip(self.keys + ['fitness'], self.mean_results() + [self.fitness]))
|
|
|
|
|
|
|
|
|
|
|
|
class PoseMetrics(SegmentMetrics):
|
|
|
|
"""
|
|
|
|
Calculates and aggregates detection and pose metrics over a given set of classes.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
save_dir (Path): Path to the directory where the output plots should be saved. Default is the current directory.
|
|
|
|
plot (bool): Whether to save the detection and segmentation plots. Default is False.
|
|
|
|
names (list): List of class names. Default is an empty list.
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
save_dir (Path): Path to the directory where the output plots should be saved.
|
|
|
|
plot (bool): Whether to save the detection and segmentation plots.
|
|
|
|
names (list): List of class names.
|
|
|
|
box (Metric): An instance of the Metric class to calculate box detection metrics.
|
|
|
|
pose (Metric): An instance of the Metric class to calculate mask segmentation metrics.
|
|
|
|
speed (dict): Dictionary to store the time taken in different phases of inference.
|
|
|
|
|
|
|
|
Methods:
|
|
|
|
process(tp_m, tp_b, conf, pred_cls, target_cls): Processes metrics over the given set of predictions.
|
|
|
|
mean_results(): Returns the mean of the detection and segmentation metrics over all the classes.
|
|
|
|
class_result(i): Returns the detection and segmentation metrics of class `i`.
|
|
|
|
maps: Returns the mean Average Precision (mAP) scores for IoU thresholds ranging from 0.50 to 0.95.
|
|
|
|
fitness: Returns the fitness scores, which are a single weighted combination of metrics.
|
|
|
|
ap_class_index: Returns the list of indices of classes used to compute Average Precision (AP).
|
|
|
|
results_dict: Returns the dictionary containing all the detection and segmentation metrics and fitness score.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, save_dir=Path('.'), plot=False, names=()) -> None:
|
|
|
|
super().__init__(save_dir, plot, names)
|
|
|
|
self.save_dir = save_dir
|
|
|
|
self.plot = plot
|
|
|
|
self.names = names
|
|
|
|
self.box = Metric()
|
|
|
|
self.pose = Metric()
|
|
|
|
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
|
|
|
|
|
|
|
|
def __getattr__(self, attr):
|
|
|
|
name = self.__class__.__name__
|
|
|
|
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|
|
|
|
|
|
|
|
def process(self, tp_b, tp_p, conf, pred_cls, target_cls):
|
|
|
|
"""
|
|
|
|
Processes the detection and pose metrics over the given set of predictions.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
tp_b (list): List of True Positive boxes.
|
|
|
|
tp_p (list): List of True Positive keypoints.
|
|
|
|
conf (list): List of confidence scores.
|
|
|
|
pred_cls (list): List of predicted classes.
|
|
|
|
target_cls (list): List of target classes.
|
|
|
|
"""
|
|
|
|
|
|
|
|
results_pose = ap_per_class(tp_p,
|
|
|
|
conf,
|
|
|
|
pred_cls,
|
|
|
|
target_cls,
|
|
|
|
plot=self.plot,
|
|
|
|
save_dir=self.save_dir,
|
|
|
|
names=self.names,
|
|
|
|
prefix='Pose')[2:]
|
|
|
|
self.pose.nc = len(self.names)
|
|
|
|
self.pose.update(results_pose)
|
|
|
|
results_box = ap_per_class(tp_b,
|
|
|
|
conf,
|
|
|
|
pred_cls,
|
|
|
|
target_cls,
|
|
|
|
plot=self.plot,
|
|
|
|
save_dir=self.save_dir,
|
|
|
|
names=self.names,
|
|
|
|
prefix='Box')[2:]
|
|
|
|
self.box.nc = len(self.names)
|
|
|
|
self.box.update(results_box)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def keys(self):
|
|
|
|
return [
|
|
|
|
'metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)',
|
|
|
|
'metrics/precision(P)', 'metrics/recall(P)', 'metrics/mAP50(P)', 'metrics/mAP50-95(P)']
|
|
|
|
|
|
|
|
def mean_results(self):
|
|
|
|
return self.box.mean_results() + self.pose.mean_results()
|
|
|
|
|
|
|
|
def class_result(self, i):
|
|
|
|
return self.box.class_result(i) + self.pose.class_result(i)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def maps(self):
|
|
|
|
return self.box.maps + self.pose.maps
|
|
|
|
|
|
|
|
@property
|
|
|
|
def fitness(self):
|
|
|
|
return self.pose.fitness() + self.box.fitness()
|
|
|
|
|
|
|
|
|
|
|
|
class ClassifyMetrics(SimpleClass):
|
|
|
|
"""
|
|
|
|
Class for computing classification metrics including top-1 and top-5 accuracy.
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
top1 (float): The top-1 accuracy.
|
|
|
|
top5 (float): The top-5 accuracy.
|
|
|
|
speed (Dict[str, float]): A dictionary containing the time taken for each step in the pipeline.
|
|
|
|
|
|
|
|
Properties:
|
|
|
|
fitness (float): The fitness of the model, which is equal to top-5 accuracy.
|
|
|
|
results_dict (Dict[str, Union[float, str]]): A dictionary containing the classification metrics and fitness.
|
|
|
|
keys (List[str]): A list of keys for the results_dict.
|
|
|
|
|
|
|
|
Methods:
|
|
|
|
process(targets, pred): Processes the targets and predictions to compute classification metrics.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self) -> None:
|
|
|
|
self.top1 = 0
|
|
|
|
self.top5 = 0
|
|
|
|
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
|
|
|
|
|
|
|
|
def process(self, targets, pred):
|
|
|
|
# target classes and predicted classes
|
|
|
|
pred, targets = torch.cat(pred), torch.cat(targets)
|
|
|
|
correct = (targets[:, None] == pred).float()
|
|
|
|
acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy
|
|
|
|
self.top1, self.top5 = acc.mean(0).tolist()
|
|
|
|
|
|
|
|
@property
|
|
|
|
def fitness(self):
|
|
|
|
return self.top5
|
|
|
|
|
|
|
|
@property
|
|
|
|
def results_dict(self):
|
|
|
|
return dict(zip(self.keys + ['fitness'], [self.top1, self.top5, self.fitness]))
|
|
|
|
|
|
|
|
@property
|
|
|
|
def keys(self):
|
|
|
|
return ['metrics/accuracy_top1', 'metrics/accuracy_top5']
|