|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from ultralytics.yolo.data.augment import LetterBox
|
|
|
|
from ultralytics.yolo.engine.predictor import BasePredictor
|
|
|
|
from ultralytics.yolo.engine.results import Results
|
|
|
|
from ultralytics.yolo.utils import ops
|
|
|
|
|
|
|
|
|
|
|
|
class RTDETRPredictor(BasePredictor):
|
|
|
|
|
|
|
|
def postprocess(self, preds, img, orig_imgs):
|
|
|
|
"""Postprocess predictions and returns a list of Results objects."""
|
|
|
|
bboxes, scores = preds[:2] # (1, bs, 300, 4), (1, bs, 300, nc)
|
|
|
|
bboxes, scores = bboxes.squeeze_(0), scores.squeeze_(0)
|
|
|
|
results = []
|
|
|
|
for i, bbox in enumerate(bboxes): # (300, 4)
|
|
|
|
bbox = ops.xywh2xyxy(bbox)
|
|
|
|
score, cls = scores[i].max(-1, keepdim=True) # (300, 1)
|
|
|
|
idx = score.squeeze(-1) > self.args.conf # (300, )
|
|
|
|
if self.args.classes is not None:
|
|
|
|
idx = (cls == torch.tensor(self.args.classes, device=cls.device)).any(1) & idx
|
|
|
|
pred = torch.cat([bbox, score, cls], dim=-1)[idx] # filter
|
|
|
|
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
|
|
|
|
oh, ow = orig_img.shape[:2]
|
|
|
|
if not isinstance(orig_imgs, torch.Tensor):
|
|
|
|
pred[..., [0, 2]] *= ow
|
|
|
|
pred[..., [1, 3]] *= oh
|
|
|
|
path = self.batch[0]
|
|
|
|
img_path = path[i] if isinstance(path, list) else path
|
|
|
|
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred))
|
|
|
|
return results
|
|
|
|
|
|
|
|
def pre_transform(self, im):
|
|
|
|
"""Pre-transform input image before inference.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
im (List(np.ndarray)): (N, 3, h, w) for tensor, [(h, w, 3) x N] for list.
|
|
|
|
|
|
|
|
Return: A list of transformed imgs.
|
|
|
|
"""
|
|
|
|
# The size must be square(640) and scaleFilled.
|
|
|
|
return [LetterBox(self.imgsz, auto=False, scaleFill=True)(image=x) for x in im]
|