|
|
|
import hydra
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from ultralytics.yolo.engine.predictor import BasePredictor
|
|
|
|
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
|
|
|
|
from ultralytics.yolo.utils.plotting import Annotator
|
|
|
|
|
|
|
|
|
|
|
|
class ClassificationPredictor(BasePredictor):
|
|
|
|
|
|
|
|
def get_annotator(self, img):
|
|
|
|
return Annotator(img, example=str(self.model.names), pil=True)
|
|
|
|
|
|
|
|
def preprocess(self, img):
|
|
|
|
img = torch.Tensor(img).to(self.model.device)
|
|
|
|
img = img.half() if self.model.fp16 else img.float() # uint8 to fp16/32
|
|
|
|
return img
|
|
|
|
|
|
|
|
def write_results(self, idx, preds, batch):
|
|
|
|
p, im, im0 = batch
|
|
|
|
log_string = ""
|
|
|
|
if len(im.shape) == 3:
|
|
|
|
im = im[None] # expand for batch dim
|
|
|
|
self.seen += 1
|
|
|
|
im0 = im0.copy()
|
|
|
|
if self.webcam: # batch_size >= 1
|
|
|
|
log_string += f'{idx}: '
|
|
|
|
frame = self.dataset.cound
|
|
|
|
else:
|
|
|
|
frame = getattr(self.dataset, 'frame', 0)
|
|
|
|
|
|
|
|
self.data_path = p
|
|
|
|
# save_path = str(self.save_dir / p.name) # im.jpg
|
|
|
|
self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}')
|
|
|
|
log_string += '%gx%g ' % im.shape[2:] # print string
|
|
|
|
self.annotator = self.get_annotator(im0)
|
|
|
|
|
|
|
|
prob = preds[idx]
|
|
|
|
# Print results
|
|
|
|
top5i = prob.argsort(0, descending=True)[:5].tolist() # top 5 indices
|
|
|
|
log_string += f"{', '.join(f'{self.model.names[j]} {prob[j]:.2f}' for j in top5i)}, "
|
|
|
|
|
|
|
|
# write
|
|
|
|
text = '\n'.join(f'{prob[j]:.2f} {self.model.names[j]}' for j in top5i)
|
|
|
|
if self.save_img or self.args.view_img: # Add bbox to image
|
|
|
|
self.annotator.text((32, 32), text, txt_color=(255, 255, 255))
|
|
|
|
if self.args.save_txt: # Write to file
|
|
|
|
with open(f'{self.txt_path}.txt', 'a') as f:
|
|
|
|
f.write(text + '\n')
|
|
|
|
|
|
|
|
return log_string
|
|
|
|
|
|
|
|
|
|
|
|
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
|
|
|
|
def predict(cfg):
|
|
|
|
cfg.model = cfg.model or "squeezenet1_0"
|
|
|
|
sz = cfg.imgsz
|
|
|
|
if type(sz) != int: # recieved listConfig
|
|
|
|
cfg.imgsz = [sz[0], sz[0]] if len(cfg.imgsz) == 1 else [sz[0], sz[1]] # expand
|
|
|
|
else:
|
|
|
|
cfg.imgsz = [sz, sz]
|
|
|
|
predictor = ClassificationPredictor(cfg)
|
|
|
|
predictor()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
predict()
|