|
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
|
|
# All rights reserved.
|
|
|
|
|
|
|
|
# This source code is licensed under the license found in the
|
|
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
|
|
|
|
from typing import Any, Dict, List, Optional, Tuple
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
from torchvision.ops.boxes import batched_nms, box_area # type: ignore
|
|
|
|
|
|
|
|
from ..amg import (MaskData, area_from_rle, batch_iterator, batched_mask_to_box, box_xyxy_to_xywh,
|
|
|
|
build_all_layer_point_grids, calculate_stability_score, coco_encode_rle, generate_crop_boxes,
|
|
|
|
is_box_near_crop_edge, mask_to_rle_pytorch, remove_small_regions, rle_to_mask, uncrop_boxes_xyxy,
|
|
|
|
uncrop_masks, uncrop_points)
|
|
|
|
from .prompt_predictor import PromptPredictor
|
|
|
|
from .sam import Sam
|
|
|
|
|
|
|
|
|
|
|
|
class SamAutomaticMaskGenerator:
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
model: Sam,
|
|
|
|
points_per_side: Optional[int] = 32,
|
|
|
|
points_per_batch: int = 64,
|
|
|
|
pred_iou_thresh: float = 0.88,
|
|
|
|
stability_score_thresh: float = 0.95,
|
|
|
|
stability_score_offset: float = 1.0,
|
|
|
|
box_nms_thresh: float = 0.7,
|
|
|
|
crop_n_layers: int = 0,
|
|
|
|
crop_nms_thresh: float = 0.7,
|
|
|
|
crop_overlap_ratio: float = 512 / 1500,
|
|
|
|
crop_n_points_downscale_factor: int = 1,
|
|
|
|
point_grids: Optional[List[np.ndarray]] = None,
|
|
|
|
min_mask_region_area: int = 0,
|
|
|
|
output_mode: str = 'binary_mask',
|
|
|
|
) -> None:
|
|
|
|
"""
|
|
|
|
Using a SAM model, generates masks for the entire image.
|
|
|
|
Generates a grid of point prompts over the image, then filters
|
|
|
|
low quality and duplicate masks. The default settings are chosen
|
|
|
|
for SAM with a ViT-H backbone.
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
model (Sam): The SAM model to use for mask prediction.
|
|
|
|
points_per_side (int, None): The number of points to be sampled
|
|
|
|
along one side of the image. The total number of points is
|
|
|
|
points_per_side**2. If None, 'point_grids' must provide explicit
|
|
|
|
point sampling.
|
|
|
|
points_per_batch (int): Sets the number of points run simultaneously
|
|
|
|
by the model. Higher numbers may be faster but use more GPU memory.
|
|
|
|
pred_iou_thresh (float): A filtering threshold in [0,1], using the
|
|
|
|
model's predicted mask quality.
|
|
|
|
stability_score_thresh (float): A filtering threshold in [0,1], using
|
|
|
|
the stability of the mask under changes to the cutoff used to binarize
|
|
|
|
the model's mask predictions.
|
|
|
|
stability_score_offset (float): The amount to shift the cutoff when
|
|
|
|
calculated the stability score.
|
|
|
|
box_nms_thresh (float): The box IoU cutoff used by non-maximal
|
|
|
|
suppression to filter duplicate masks.
|
|
|
|
crop_n_layers (int): If >0, mask prediction will be run again on
|
|
|
|
crops of the image. Sets the number of layers to run, where each
|
|
|
|
layer has 2**i_layer number of image crops.
|
|
|
|
crop_nms_thresh (float): The box IoU cutoff used by non-maximal
|
|
|
|
suppression to filter duplicate masks between different crops.
|
|
|
|
crop_overlap_ratio (float): Sets the degree to which crops overlap.
|
|
|
|
In the first crop layer, crops will overlap by this fraction of
|
|
|
|
the image length. Later layers with more crops scale down this overlap.
|
|
|
|
crop_n_points_downscale_factor (int): The number of points-per-side
|
|
|
|
sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
|
|
|
|
point_grids (list(np.ndarray), None): A list over explicit grids
|
|
|
|
of points used for sampling, normalized to [0,1]. The nth grid in the
|
|
|
|
list is used in the nth crop layer. Exclusive with points_per_side.
|
|
|
|
min_mask_region_area (int): If >0, postprocessing will be applied
|
|
|
|
to remove disconnected regions and holes in masks with area smaller
|
|
|
|
than min_mask_region_area. Requires opencv.
|
|
|
|
output_mode (str): The form masks are returned in. Can be 'binary_mask',
|
|
|
|
'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools.
|
|
|
|
For large resolutions, 'binary_mask' may consume large amounts of
|
|
|
|
memory.
|
|
|
|
"""
|
|
|
|
|
|
|
|
assert (points_per_side is None) != (point_grids is
|
|
|
|
None), 'Exactly one of points_per_side or point_grid must be provided.'
|
|
|
|
if points_per_side is not None:
|
|
|
|
self.point_grids = build_all_layer_point_grids(
|
|
|
|
points_per_side,
|
|
|
|
crop_n_layers,
|
|
|
|
crop_n_points_downscale_factor,
|
|
|
|
)
|
|
|
|
elif point_grids is not None:
|
|
|
|
self.point_grids = point_grids
|
|
|
|
else:
|
|
|
|
raise ValueError("Can't have both points_per_side and point_grid be None.")
|
|
|
|
|
|
|
|
assert output_mode in {'binary_mask', 'uncompressed_rle', 'coco_rle'}, f'Unknown output_mode {output_mode}.'
|
|
|
|
if output_mode == 'coco_rle':
|
|
|
|
from pycocotools import mask as mask_utils # type: ignore # noqa: F401
|
|
|
|
|
|
|
|
if min_mask_region_area > 0:
|
|
|
|
import cv2 # type: ignore # noqa: F401
|
|
|
|
|
|
|
|
self.predictor = PromptPredictor(model)
|
|
|
|
self.points_per_batch = points_per_batch
|
|
|
|
self.pred_iou_thresh = pred_iou_thresh
|
|
|
|
self.stability_score_thresh = stability_score_thresh
|
|
|
|
self.stability_score_offset = stability_score_offset
|
|
|
|
self.box_nms_thresh = box_nms_thresh
|
|
|
|
self.crop_n_layers = crop_n_layers
|
|
|
|
self.crop_nms_thresh = crop_nms_thresh
|
|
|
|
self.crop_overlap_ratio = crop_overlap_ratio
|
|
|
|
self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
|
|
|
|
self.min_mask_region_area = min_mask_region_area
|
|
|
|
self.output_mode = output_mode
|
|
|
|
|
|
|
|
# TODO: Temporary implementation for compatibility
|
|
|
|
def __call__(self, image: np.ndarray, augment=False, visualize=False) -> List[Dict[str, Any]]:
|
|
|
|
return self.generate(image)
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
|
|
|
|
"""
|
|
|
|
Generates masks for the given image.
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
image (np.ndarray): The image to generate masks for, in HWC uint8 format.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
list(dict(str, any)): A list over records for masks. Each record is a dict containing the following keys:
|
|
|
|
segmentation (dict(str, any), np.ndarray): The mask. If
|
|
|
|
output_mode='binary_mask', is an array of shape HW. Otherwise,
|
|
|
|
is a dictionary containing the RLE.
|
|
|
|
bbox (list(float)): The box around the mask, in XYWH format.
|
|
|
|
area (int): The area in pixels of the mask.
|
|
|
|
predicted_iou (float): The model's own prediction of the mask's
|
|
|
|
quality. This is filtered by the pred_iou_thresh parameter.
|
|
|
|
point_coords (list(list(float))): The point coordinates input
|
|
|
|
to the model to generate this mask.
|
|
|
|
stability_score (float): A measure of the mask's quality. This
|
|
|
|
is filtered on using the stability_score_thresh parameter.
|
|
|
|
crop_box (list(float)): The crop of the image used to generate
|
|
|
|
the mask, given in XYWH format.
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Generate masks
|
|
|
|
mask_data = self._generate_masks(image)
|
|
|
|
|
|
|
|
# Filter small disconnected regions and holes in masks
|
|
|
|
if self.min_mask_region_area > 0:
|
|
|
|
mask_data = self.postprocess_small_regions(
|
|
|
|
mask_data,
|
|
|
|
self.min_mask_region_area,
|
|
|
|
max(self.box_nms_thresh, self.crop_nms_thresh),
|
|
|
|
)
|
|
|
|
|
|
|
|
# Encode masks
|
|
|
|
if self.output_mode == 'coco_rle':
|
|
|
|
mask_data['segmentations'] = [coco_encode_rle(rle) for rle in mask_data['rles']]
|
|
|
|
elif self.output_mode == 'binary_mask':
|
|
|
|
mask_data['segmentations'] = [rle_to_mask(rle) for rle in mask_data['rles']]
|
|
|
|
else:
|
|
|
|
mask_data['segmentations'] = mask_data['rles']
|
|
|
|
|
|
|
|
# Write mask records
|
|
|
|
curr_anns = []
|
|
|
|
for idx in range(len(mask_data['segmentations'])):
|
|
|
|
ann = {
|
|
|
|
'segmentation': mask_data['segmentations'][idx],
|
|
|
|
'area': area_from_rle(mask_data['rles'][idx]),
|
|
|
|
'bbox': box_xyxy_to_xywh(mask_data['boxes'][idx]).tolist(),
|
|
|
|
'predicted_iou': mask_data['iou_preds'][idx].item(),
|
|
|
|
'point_coords': [mask_data['points'][idx].tolist()],
|
|
|
|
'stability_score': mask_data['stability_score'][idx].item(),
|
|
|
|
'crop_box': box_xyxy_to_xywh(mask_data['crop_boxes'][idx]).tolist(), }
|
|
|
|
curr_anns.append(ann)
|
|
|
|
|
|
|
|
return curr_anns
|
|
|
|
|
|
|
|
def _generate_masks(self, image: np.ndarray) -> MaskData:
|
|
|
|
orig_size = image.shape[:2]
|
|
|
|
crop_boxes, layer_idxs = generate_crop_boxes(orig_size, self.crop_n_layers, self.crop_overlap_ratio)
|
|
|
|
|
|
|
|
# Iterate over image crops
|
|
|
|
data = MaskData()
|
|
|
|
for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
|
|
|
|
crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
|
|
|
|
data.cat(crop_data)
|
|
|
|
|
|
|
|
# Remove duplicate masks between crops
|
|
|
|
if len(crop_boxes) > 1:
|
|
|
|
# Prefer masks from smaller crops
|
|
|
|
scores = 1 / box_area(data['crop_boxes'])
|
|
|
|
scores = scores.to(data['boxes'].device)
|
|
|
|
keep_by_nms = batched_nms(
|
|
|
|
data['boxes'].float(),
|
|
|
|
scores,
|
|
|
|
torch.zeros_like(data['boxes'][:, 0]), # categories
|
|
|
|
iou_threshold=self.crop_nms_thresh,
|
|
|
|
)
|
|
|
|
data.filter(keep_by_nms)
|
|
|
|
|
|
|
|
data.to_numpy()
|
|
|
|
return data
|
|
|
|
|
|
|
|
def _process_crop(
|
|
|
|
self,
|
|
|
|
image: np.ndarray,
|
|
|
|
crop_box: List[int],
|
|
|
|
crop_layer_idx: int,
|
|
|
|
orig_size: Tuple[int, ...],
|
|
|
|
) -> MaskData:
|
|
|
|
# Crop the image and calculate embeddings
|
|
|
|
x0, y0, x1, y1 = crop_box
|
|
|
|
cropped_im = image[y0:y1, x0:x1, :]
|
|
|
|
cropped_im_size = cropped_im.shape[:2]
|
|
|
|
self.predictor.set_image(cropped_im)
|
|
|
|
|
|
|
|
# Get points for this crop
|
|
|
|
points_scale = np.array(cropped_im_size)[None, ::-1]
|
|
|
|
points_for_image = self.point_grids[crop_layer_idx] * points_scale
|
|
|
|
|
|
|
|
# Generate masks for this crop in batches
|
|
|
|
data = MaskData()
|
|
|
|
for (points, ) in batch_iterator(self.points_per_batch, points_for_image):
|
|
|
|
batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size)
|
|
|
|
data.cat(batch_data)
|
|
|
|
del batch_data
|
|
|
|
self.predictor.reset_image()
|
|
|
|
|
|
|
|
# Remove duplicates within this crop.
|
|
|
|
keep_by_nms = batched_nms(
|
|
|
|
data['boxes'].float(),
|
|
|
|
data['iou_preds'],
|
|
|
|
torch.zeros_like(data['boxes'][:, 0]), # categories
|
|
|
|
iou_threshold=self.box_nms_thresh,
|
|
|
|
)
|
|
|
|
data.filter(keep_by_nms)
|
|
|
|
|
|
|
|
# Return to the original image frame
|
|
|
|
data['boxes'] = uncrop_boxes_xyxy(data['boxes'], crop_box)
|
|
|
|
data['points'] = uncrop_points(data['points'], crop_box)
|
|
|
|
data['crop_boxes'] = torch.tensor([crop_box for _ in range(len(data['rles']))])
|
|
|
|
|
|
|
|
return data
|
|
|
|
|
|
|
|
def _process_batch(
|
|
|
|
self,
|
|
|
|
points: np.ndarray,
|
|
|
|
im_size: Tuple[int, ...],
|
|
|
|
crop_box: List[int],
|
|
|
|
orig_size: Tuple[int, ...],
|
|
|
|
) -> MaskData:
|
|
|
|
orig_h, orig_w = orig_size
|
|
|
|
|
|
|
|
# Run model on this batch
|
|
|
|
transformed_points = self.predictor.transform.apply_coords(points, im_size)
|
|
|
|
in_points = torch.as_tensor(transformed_points, device=self.predictor.device)
|
|
|
|
in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)
|
|
|
|
masks, iou_preds, _ = self.predictor.predict_torch(
|
|
|
|
in_points[:, None, :],
|
|
|
|
in_labels[:, None],
|
|
|
|
multimask_output=True,
|
|
|
|
return_logits=True,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Serialize predictions and store in MaskData
|
|
|
|
data = MaskData(
|
|
|
|
masks=masks.flatten(0, 1),
|
|
|
|
iou_preds=iou_preds.flatten(0, 1),
|
|
|
|
points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)),
|
|
|
|
)
|
|
|
|
del masks
|
|
|
|
|
|
|
|
# Filter by predicted IoU
|
|
|
|
if self.pred_iou_thresh > 0.0:
|
|
|
|
keep_mask = data['iou_preds'] > self.pred_iou_thresh
|
|
|
|
data.filter(keep_mask)
|
|
|
|
|
|
|
|
# Calculate stability score
|
|
|
|
data['stability_score'] = calculate_stability_score(data['masks'], self.predictor.model.mask_threshold,
|
|
|
|
self.stability_score_offset)
|
|
|
|
if self.stability_score_thresh > 0.0:
|
|
|
|
keep_mask = data['stability_score'] >= self.stability_score_thresh
|
|
|
|
data.filter(keep_mask)
|
|
|
|
|
|
|
|
# Threshold masks and calculate boxes
|
|
|
|
data['masks'] = data['masks'] > self.predictor.model.mask_threshold
|
|
|
|
data['boxes'] = batched_mask_to_box(data['masks'])
|
|
|
|
|
|
|
|
# Filter boxes that touch crop boundaries
|
|
|
|
keep_mask = ~is_box_near_crop_edge(data['boxes'], crop_box, [0, 0, orig_w, orig_h])
|
|
|
|
if not torch.all(keep_mask):
|
|
|
|
data.filter(keep_mask)
|
|
|
|
|
|
|
|
# Compress to RLE
|
|
|
|
data['masks'] = uncrop_masks(data['masks'], crop_box, orig_h, orig_w)
|
|
|
|
data['rles'] = mask_to_rle_pytorch(data['masks'])
|
|
|
|
del data['masks']
|
|
|
|
|
|
|
|
return data
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def postprocess_small_regions(mask_data: MaskData, min_area: int, nms_thresh: float) -> MaskData:
|
|
|
|
"""
|
|
|
|
Removes small disconnected regions and holes in masks, then reruns
|
|
|
|
box NMS to remove any new duplicates.
|
|
|
|
|
|
|
|
Edits mask_data in place.
|
|
|
|
|
|
|
|
Requires open-cv as a dependency.
|
|
|
|
"""
|
|
|
|
if len(mask_data['rles']) == 0:
|
|
|
|
return mask_data
|
|
|
|
|
|
|
|
# Filter small disconnected regions and holes
|
|
|
|
new_masks = []
|
|
|
|
scores = []
|
|
|
|
for rle in mask_data['rles']:
|
|
|
|
mask = rle_to_mask(rle)
|
|
|
|
|
|
|
|
mask, changed = remove_small_regions(mask, min_area, mode='holes')
|
|
|
|
unchanged = not changed
|
|
|
|
mask, changed = remove_small_regions(mask, min_area, mode='islands')
|
|
|
|
unchanged = unchanged and not changed
|
|
|
|
|
|
|
|
new_masks.append(torch.as_tensor(mask).unsqueeze(0))
|
|
|
|
# Give score=0 to changed masks and score=1 to unchanged masks
|
|
|
|
# so NMS will prefer ones that didn't need postprocessing
|
|
|
|
scores.append(float(unchanged))
|
|
|
|
|
|
|
|
# Recalculate boxes and remove any new duplicates
|
|
|
|
masks = torch.cat(new_masks, dim=0)
|
|
|
|
boxes = batched_mask_to_box(masks)
|
|
|
|
keep_by_nms = batched_nms(
|
|
|
|
boxes.float(),
|
|
|
|
torch.as_tensor(scores),
|
|
|
|
torch.zeros_like(boxes[:, 0]), # categories
|
|
|
|
iou_threshold=nms_thresh,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Only recalculate RLEs for masks that have changed
|
|
|
|
for i_mask in keep_by_nms:
|
|
|
|
if scores[i_mask] == 0.0:
|
|
|
|
mask_torch = masks[i_mask].unsqueeze(0)
|
|
|
|
mask_data['rles'][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
|
|
|
|
mask_data['boxes'][i_mask] = boxes[i_mask] # update res directly
|
|
|
|
mask_data.filter(keep_by_nms)
|
|
|
|
|
|
|
|
return mask_data
|