|
|
|
# Ultralytics YOLO 🚀, GPL-3.0 license
|
|
|
|
|
|
|
|
import hydra
|
|
|
|
import torch
|
|
|
|
import torchvision
|
|
|
|
|
|
|
|
from ultralytics.nn.tasks import ClassificationModel, attempt_load_one_weight
|
|
|
|
from ultralytics.yolo import v8
|
|
|
|
from ultralytics.yolo.data import build_classification_dataloader
|
|
|
|
from ultralytics.yolo.engine.trainer import BaseTrainer
|
|
|
|
from ultralytics.yolo.utils import DEFAULT_CONFIG
|
|
|
|
from ultralytics.yolo.utils.torch_utils import strip_optimizer
|
|
|
|
|
|
|
|
|
|
|
|
class ClassificationTrainer(BaseTrainer):
|
|
|
|
|
|
|
|
def __init__(self, config=DEFAULT_CONFIG, overrides=None):
|
|
|
|
if overrides is None:
|
|
|
|
overrides = {}
|
|
|
|
overrides["task"] = "classify"
|
|
|
|
super().__init__(config, overrides)
|
|
|
|
|
|
|
|
def set_model_attributes(self):
|
|
|
|
self.model.names = self.data["names"]
|
|
|
|
|
|
|
|
def get_model(self, cfg=None, weights=None, verbose=True):
|
|
|
|
model = ClassificationModel(cfg, nc=self.data["nc"])
|
|
|
|
|
|
|
|
pretrained = False
|
|
|
|
for m in model.modules():
|
|
|
|
if not pretrained and hasattr(m, 'reset_parameters'):
|
|
|
|
m.reset_parameters()
|
|
|
|
if isinstance(m, torch.nn.Dropout) and self.args.dropout:
|
|
|
|
m.p = self.args.dropout # set dropout
|
|
|
|
for p in model.parameters():
|
|
|
|
p.requires_grad = True # for training
|
|
|
|
|
|
|
|
if weights:
|
|
|
|
model.load(weights)
|
|
|
|
|
|
|
|
# Update defaults
|
|
|
|
if self.args.imgsz == 640:
|
|
|
|
self.args.imgsz = 224
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
def setup_model(self):
|
|
|
|
"""
|
|
|
|
load/create/download model for any task
|
|
|
|
"""
|
|
|
|
# classification models require special handling
|
|
|
|
|
|
|
|
if isinstance(self.model, torch.nn.Module): # if model is loaded beforehand. No setup needed
|
|
|
|
return
|
|
|
|
|
|
|
|
model = str(self.model)
|
|
|
|
# Load a YOLO model locally, from torchvision, or from Ultralytics assets
|
|
|
|
if model.endswith(".pt"):
|
|
|
|
self.model, _ = attempt_load_one_weight(model, device='cpu')
|
|
|
|
elif model.endswith(".yaml"):
|
|
|
|
self.model = self.get_model(cfg=model)
|
|
|
|
elif model in torchvision.models.__dict__:
|
|
|
|
pretrained = True
|
|
|
|
self.model = torchvision.models.__dict__[model](weights='IMAGENET1K_V1' if pretrained else None)
|
|
|
|
else:
|
|
|
|
FileNotFoundError(f'ERROR: model={model} not found locally or online. Please check model name.')
|
|
|
|
|
|
|
|
return # dont return ckpt. Classification doesn't support resume
|
|
|
|
|
|
|
|
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
|
|
|
|
return build_classification_dataloader(path=dataset_path,
|
|
|
|
imgsz=self.args.imgsz,
|
|
|
|
batch_size=batch_size if mode == "train" else (batch_size * 2),
|
|
|
|
augment=mode == "train",
|
|
|
|
rank=rank,
|
|
|
|
workers=self.args.workers)
|
|
|
|
|
|
|
|
def preprocess_batch(self, batch):
|
|
|
|
batch["img"] = batch["img"].to(self.device)
|
|
|
|
batch["cls"] = batch["cls"].to(self.device)
|
|
|
|
return batch
|
|
|
|
|
|
|
|
def progress_string(self):
|
|
|
|
return ('\n' + '%11s' * (4 + len(self.loss_names))) % \
|
|
|
|
('Epoch', 'GPU_mem', *self.loss_names, 'Instances', 'Size')
|
|
|
|
|
|
|
|
def get_validator(self):
|
|
|
|
self.loss_names = ['loss']
|
|
|
|
return v8.classify.ClassificationValidator(self.test_loader, self.save_dir, logger=self.console)
|
|
|
|
|
|
|
|
def criterion(self, preds, batch):
|
|
|
|
loss = torch.nn.functional.cross_entropy(preds, batch["cls"], reduction='sum') / self.args.nbs
|
|
|
|
loss_items = loss.detach()
|
|
|
|
return loss, loss_items
|
|
|
|
|
|
|
|
# def label_loss_items(self, loss_items=None, prefix="train"):
|
|
|
|
# """
|
|
|
|
# Returns a loss dict with labelled training loss items tensor
|
|
|
|
# """
|
|
|
|
# # Not needed for classification but necessary for segmentation & detection
|
|
|
|
# keys = [f"{prefix}/{x}" for x in self.loss_names]
|
|
|
|
# if loss_items is not None:
|
|
|
|
# loss_items = [round(float(x), 5) for x in loss_items] # convert tensors to 5 decimal place floats
|
|
|
|
# return dict(zip(keys, loss_items))
|
|
|
|
# else:
|
|
|
|
# return keys
|
|
|
|
|
|
|
|
def label_loss_items(self, loss_items=None, prefix="train"):
|
|
|
|
"""
|
|
|
|
Returns a loss dict with labelled training loss items tensor
|
|
|
|
"""
|
|
|
|
# Not needed for classification but necessary for segmentation & detection
|
|
|
|
keys = [f"{prefix}/{x}" for x in self.loss_names]
|
|
|
|
if loss_items is not None:
|
|
|
|
loss_items = [round(float(loss_items), 5)]
|
|
|
|
return dict(zip(keys, loss_items))
|
|
|
|
else:
|
|
|
|
return keys
|
|
|
|
|
|
|
|
def resume_training(self, ckpt):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def final_eval(self):
|
|
|
|
for f in self.last, self.best:
|
|
|
|
if f.exists():
|
|
|
|
strip_optimizer(f) # strip optimizers
|
|
|
|
# TODO: validate best.pt after training completes
|
|
|
|
# if f is self.best:
|
|
|
|
# self.console.info(f'\nValidating {f}...')
|
|
|
|
# self.validator.args.save_json = True
|
|
|
|
# self.metrics = self.validator(model=f)
|
|
|
|
# self.metrics.pop('fitness', None)
|
|
|
|
# self.run_callbacks('on_fit_epoch_end')
|
|
|
|
|
|
|
|
|
|
|
|
@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
|
|
|
|
def train(cfg):
|
|
|
|
cfg.model = cfg.model or "yolov8n-cls.yaml" # or "resnet18"
|
|
|
|
cfg.data = cfg.data or "mnist160" # or yolo.ClassificationDataset("mnist")
|
|
|
|
cfg.lr0 = 0.1
|
|
|
|
cfg.weight_decay = 5e-5
|
|
|
|
cfg.label_smoothing = 0.1
|
|
|
|
cfg.warmup_epochs = 0.0
|
|
|
|
trainer = ClassificationTrainer(cfg)
|
|
|
|
trainer.train()
|
|
|
|
# from ultralytics import YOLO
|
|
|
|
# model = YOLO(cfg.model)
|
|
|
|
# model.train(**cfg)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
"""
|
|
|
|
CLI usage:
|
|
|
|
python ultralytics/yolo/v8/classify/train.py model=resnet18 data=imagenette160 epochs=1 imgsz=224
|
|
|
|
|
|
|
|
TODO:
|
|
|
|
Direct cli support, i.e, yolov8 classify_train args.epochs 10
|
|
|
|
"""
|
|
|
|
train()
|