|
|
|
import math
|
|
|
|
import os
|
|
|
|
import platform
|
|
|
|
import random
|
|
|
|
import time
|
|
|
|
from contextlib import contextmanager
|
|
|
|
from copy import deepcopy
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import thop
|
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
|
|
|
|
|
|
import ultralytics
|
|
|
|
from ultralytics.yolo.utils import LOGGER
|
|
|
|
from ultralytics.yolo.utils.checks import git_describe
|
|
|
|
|
|
|
|
from .checks import check_version
|
|
|
|
|
|
|
|
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
|
|
|
RANK = int(os.getenv('RANK', -1))
|
|
|
|
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
|
|
|
|
|
|
|
|
|
|
|
|
@contextmanager
|
|
|
|
def torch_distributed_zero_first(local_rank: int):
|
|
|
|
# Decorator to make all processes in distributed training wait for each local_master to do something
|
|
|
|
if local_rank not in {-1, 0}:
|
|
|
|
dist.barrier(device_ids=[local_rank])
|
|
|
|
yield
|
|
|
|
if local_rank == 0:
|
|
|
|
dist.barrier(device_ids=[0])
|
|
|
|
|
|
|
|
|
|
|
|
def smart_inference_mode(torch_1_9=check_version(torch.__version__, '1.9.0')):
|
|
|
|
# Applies torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator
|
|
|
|
def decorate(fn):
|
|
|
|
return (torch.inference_mode if torch_1_9 else torch.no_grad)()(fn)
|
|
|
|
|
|
|
|
return decorate
|
|
|
|
|
|
|
|
|
|
|
|
def DDP_model(model):
|
|
|
|
# Model DDP creation with checks
|
|
|
|
assert not check_version(torch.__version__, '1.12.0', pinned=True), \
|
|
|
|
'torch==1.12.0 torchvision==0.13.0 DDP training is not supported due to a known issue. ' \
|
|
|
|
'Please upgrade or downgrade torch to use DDP. See https://github.com/ultralytics/yolov5/issues/8395'
|
|
|
|
if check_version(torch.__version__, '1.11.0'):
|
|
|
|
return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK, static_graph=True)
|
|
|
|
else:
|
|
|
|
return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
|
|
|
|
|
|
|
|
|
|
|
|
def select_device(device='', batch_size=0, newline=True):
|
|
|
|
# device = None or 'cpu' or 0 or '0' or '0,1,2,3'
|
|
|
|
ver = git_describe() or ultralytics.__version__ # git commit or pip package version
|
|
|
|
s = f'Ultralytics YOLO 🚀 {ver} Python-{platform.python_version()} torch-{torch.__version__} '
|
|
|
|
device = str(device).strip().lower().replace('cuda:', '').replace('none', '') # to string, 'cuda:0' to '0'
|
|
|
|
cpu = device == 'cpu'
|
|
|
|
mps = device == 'mps' # Apple Metal Performance Shaders (MPS)
|
|
|
|
if cpu or mps:
|
|
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
|
|
|
|
elif device: # non-cpu device requested
|
|
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable - must be before assert is_available()
|
|
|
|
assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', '')), \
|
|
|
|
f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)"
|
|
|
|
|
|
|
|
if not cpu and not mps and torch.cuda.is_available(): # prefer GPU if available
|
|
|
|
devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7
|
|
|
|
n = len(devices) # device count
|
|
|
|
if n > 1 and batch_size > 0: # check batch_size is divisible by device_count
|
|
|
|
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
|
|
|
|
space = ' ' * (len(s) + 1)
|
|
|
|
for i, d in enumerate(devices):
|
|
|
|
p = torch.cuda.get_device_properties(i)
|
|
|
|
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n" # bytes to MB
|
|
|
|
arg = 'cuda:0'
|
|
|
|
elif mps and getattr(torch, 'has_mps', False) and torch.backends.mps.is_available(): # prefer MPS if available
|
|
|
|
s += 'MPS\n'
|
|
|
|
arg = 'mps'
|
|
|
|
else: # revert to CPU
|
|
|
|
s += 'CPU\n'
|
|
|
|
arg = 'cpu'
|
|
|
|
|
|
|
|
if not newline:
|
|
|
|
s = s.rstrip()
|
|
|
|
LOGGER.info(s)
|
|
|
|
return torch.device(arg)
|
|
|
|
|
|
|
|
|
|
|
|
def time_sync():
|
|
|
|
# PyTorch-accurate time
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
return time.time()
|
|
|
|
|
|
|
|
|
|
|
|
def fuse_conv_and_bn(conv, bn):
|
|
|
|
# Fuse Conv2d() and BatchNorm2d() layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
|
|
|
|
fusedconv = nn.Conv2d(conv.in_channels,
|
|
|
|
conv.out_channels,
|
|
|
|
kernel_size=conv.kernel_size,
|
|
|
|
stride=conv.stride,
|
|
|
|
padding=conv.padding,
|
|
|
|
dilation=conv.dilation,
|
|
|
|
groups=conv.groups,
|
|
|
|
bias=True).requires_grad_(False).to(conv.weight.device)
|
|
|
|
|
|
|
|
# Prepare filters
|
|
|
|
w_conv = conv.weight.clone().view(conv.out_channels, -1)
|
|
|
|
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
|
|
|
|
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
|
|
|
|
|
|
|
|
# Prepare spatial bias
|
|
|
|
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
|
|
|
|
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
|
|
|
|
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
|
|
|
|
|
|
|
|
return fusedconv
|
|
|
|
|
|
|
|
|
|
|
|
def model_info(model, verbose=False, imgsz=640):
|
|
|
|
# Model information. imgsz may be int or list, i.e. imgsz=640 or imgsz=[640, 320]
|
|
|
|
n_p = get_num_params(model)
|
|
|
|
n_g = get_num_gradients(model) # number gradients
|
|
|
|
if verbose:
|
|
|
|
print(f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}")
|
|
|
|
for i, (name, p) in enumerate(model.named_parameters()):
|
|
|
|
name = name.replace('module_list.', '')
|
|
|
|
print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
|
|
|
|
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
|
|
|
|
|
|
|
|
flops = get_flops(model, imgsz)
|
|
|
|
fs = f', {flops:.1f} GFLOPs' if flops else ''
|
|
|
|
name = Path(model.yaml_file).stem.replace('yolov5', 'YOLOv5') if hasattr(model, 'yaml_file') else 'Model'
|
|
|
|
LOGGER.info(f"{name} summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
|
|
|
|
|
|
|
|
|
|
|
|
def get_num_params(model):
|
|
|
|
return sum(x.numel() for x in model.parameters())
|
|
|
|
|
|
|
|
|
|
|
|
def get_num_gradients(model):
|
|
|
|
return sum(x.numel() for x in model.parameters() if x.requires_grad)
|
|
|
|
|
|
|
|
|
|
|
|
def get_flops(model, imgsz=640):
|
|
|
|
try:
|
|
|
|
p = next(model.parameters())
|
|
|
|
stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32 # max stride
|
|
|
|
im = torch.empty((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format
|
|
|
|
flops = thop.profile(deepcopy(model), inputs=(im,), verbose=False)[0] / 1E9 * 2 # stride GFLOPs
|
|
|
|
imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz] # expand if int/float
|
|
|
|
flops = flops * imgsz[0] / stride * imgsz[1] / stride # 640x640 GFLOPs
|
|
|
|
return flops
|
|
|
|
except Exception:
|
|
|
|
return 0
|
|
|
|
|
|
|
|
|
|
|
|
def initialize_weights(model):
|
|
|
|
for m in model.modules():
|
|
|
|
t = type(m)
|
|
|
|
if t is nn.Conv2d:
|
|
|
|
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
|
|
|
elif t is nn.BatchNorm2d:
|
|
|
|
m.eps = 1e-3
|
|
|
|
m.momentum = 0.03
|
|
|
|
elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
|
|
|
|
m.inplace = True
|
|
|
|
|
|
|
|
|
|
|
|
def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
|
|
|
|
# Scales img(bs,3,y,x) by ratio constrained to gs-multiple
|
|
|
|
if ratio == 1.0:
|
|
|
|
return img
|
|
|
|
h, w = img.shape[2:]
|
|
|
|
s = (int(h * ratio), int(w * ratio)) # new size
|
|
|
|
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
|
|
|
|
if not same_shape: # pad/crop img
|
|
|
|
h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w))
|
|
|
|
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
|
|
|
|
|
|
|
|
|
|
|
|
def check_imgsz(imgsz, s=32, floor=0):
|
|
|
|
# Verify image size is a multiple of stride s in each dimension
|
|
|
|
if isinstance(imgsz, int): # integer i.e. imgsz=640
|
|
|
|
new_size = max(make_divisible(imgsz, int(s)), floor)
|
|
|
|
else: # list i.e. imgsz=[640, 480]
|
|
|
|
imgsz = list(imgsz) # convert to list if tuple
|
|
|
|
new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz]
|
|
|
|
if new_size != imgsz:
|
|
|
|
LOGGER.warning(f'WARNING ⚠️ --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}')
|
|
|
|
return new_size
|
|
|
|
|
|
|
|
|
|
|
|
def make_divisible(x, divisor):
|
|
|
|
# Returns nearest x divisible by divisor
|
|
|
|
if isinstance(divisor, torch.Tensor):
|
|
|
|
divisor = int(divisor.max()) # to int
|
|
|
|
return math.ceil(x / divisor) * divisor
|
|
|
|
|
|
|
|
|
|
|
|
def copy_attr(a, b, include=(), exclude=()):
|
|
|
|
# Copy attributes from b to a, options to only include [...] and to exclude [...]
|
|
|
|
for k, v in b.__dict__.items():
|
|
|
|
if (len(include) and k not in include) or k.startswith('_') or k in exclude:
|
|
|
|
continue
|
|
|
|
else:
|
|
|
|
setattr(a, k, v)
|
|
|
|
|
|
|
|
|
|
|
|
def intersect_state_dicts(da, db, exclude=()):
|
|
|
|
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
|
|
|
|
return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape}
|
|
|
|
|
|
|
|
|
|
|
|
def is_parallel(model):
|
|
|
|
# Returns True if model is of type DP or DDP
|
|
|
|
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
|
|
|
|
|
|
|
|
|
|
|
|
def de_parallel(model):
|
|
|
|
# De-parallelize a model: returns single-GPU model if model is of type DP or DDP
|
|
|
|
return model.module if is_parallel(model) else model
|
|
|
|
|
|
|
|
|
|
|
|
def one_cycle(y1=0.0, y2=1.0, steps=100):
|
|
|
|
# lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf
|
|
|
|
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
|
|
|
|
|
|
|
|
|
|
|
|
def init_seeds(seed=0, deterministic=False):
|
|
|
|
# Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html
|
|
|
|
random.seed(seed)
|
|
|
|
np.random.seed(seed)
|
|
|
|
torch.manual_seed(seed)
|
|
|
|
torch.cuda.manual_seed(seed)
|
|
|
|
torch.cuda.manual_seed_all(seed) # for Multi-GPU, exception safe
|
|
|
|
# torch.backends.cudnn.benchmark = True # AutoBatch problem https://github.com/ultralytics/yolov5/issues/9287
|
|
|
|
if deterministic and check_version(torch.__version__, '1.12.0'): # https://github.com/ultralytics/yolov5/pull/8213
|
|
|
|
torch.use_deterministic_algorithms(True)
|
|
|
|
torch.backends.cudnn.deterministic = True
|
|
|
|
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
|
|
|
|
os.environ['PYTHONHASHSEED'] = str(seed)
|
|
|
|
|
|
|
|
|
|
|
|
class ModelEMA:
|
|
|
|
""" Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models
|
|
|
|
Keeps a moving average of everything in the model state_dict (parameters and buffers)
|
|
|
|
For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, model, decay=0.9999, tau=2000, updates=0):
|
|
|
|
# Create EMA
|
|
|
|
self.ema = deepcopy(de_parallel(model)).eval() # FP32 EMA
|
|
|
|
self.updates = updates # number of EMA updates
|
|
|
|
self.decay = lambda x: decay * (1 - math.exp(-x / tau)) # decay exponential ramp (to help early epochs)
|
|
|
|
for p in self.ema.parameters():
|
|
|
|
p.requires_grad_(False)
|
|
|
|
|
|
|
|
def update(self, model):
|
|
|
|
# Update EMA parameters
|
|
|
|
self.updates += 1
|
|
|
|
d = self.decay(self.updates)
|
|
|
|
|
|
|
|
msd = de_parallel(model).state_dict() # model state_dict
|
|
|
|
for k, v in self.ema.state_dict().items():
|
|
|
|
if v.dtype.is_floating_point: # true for FP16 and FP32
|
|
|
|
v *= d
|
|
|
|
v += (1 - d) * msd[k].detach()
|
|
|
|
# assert v.dtype == msd[k].dtype == torch.float32, f'{k}: EMA {v.dtype} and model {msd[k].dtype} must be FP32'
|
|
|
|
|
|
|
|
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
|
|
|
|
# Update EMA attributes
|
|
|
|
copy_attr(self.ema, model, include, exclude)
|
|
|
|
|
|
|
|
|
|
|
|
def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer()
|
|
|
|
# Strip optimizer from 'f' to finalize training, optionally save as 's'
|
|
|
|
x = torch.load(f, map_location=torch.device('cpu'))
|
|
|
|
if x.get('ema'):
|
|
|
|
x['model'] = x['ema'] # replace model with ema
|
|
|
|
for k in 'optimizer', 'best_fitness', 'ema', 'updates': # keys
|
|
|
|
x[k] = None
|
|
|
|
x['epoch'] = -1
|
|
|
|
x['model'].half() # to FP16
|
|
|
|
for p in x['model'].parameters():
|
|
|
|
p.requires_grad = False
|
|
|
|
torch.save(x, s or f)
|
|
|
|
mb = os.path.getsize(s or f) / 1E6 # filesize
|
|
|
|
LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")
|