You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

167 lines
6.0 KiB

import logging
from pathlib import Path
import torch
from omegaconf import OmegaConf
from tqdm import tqdm
from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml
from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG
from ultralytics.yolo.utils import LOGGER, TQDM_BAR_FORMAT
from ultralytics.yolo.utils.files import increment_path
from ultralytics.yolo.utils.modeling import get_model
from ultralytics.yolo.utils.modeling.autobackend import AutoBackend
from ultralytics.yolo.utils.ops import Profile
from ultralytics.yolo.utils.torch_utils import check_imgsz, de_parallel, select_device
class BaseValidator:
"""
Base validator class.
"""
def __init__(self, dataloader=None, save_dir=None, pbar=None, logger=None, args=None):
self.dataloader = dataloader
self.pbar = pbar
self.logger = logger or LOGGER
self.args = args or OmegaConf.load(DEFAULT_CONFIG)
self.model = None
self.data = None
self.device = None
self.batch_i = None
self.training = True
self.speed = None
self.save_dir = save_dir if save_dir is not None else \
increment_path(Path(self.args.project) / self.args.name, exist_ok=self.args.exist_ok)
def __call__(self, trainer=None, model=None):
"""
Supports validation of a pre-trained model if passed or a model being trained
if trainer is passed (trainer gets priority).
"""
self.training = trainer is not None
if self.training:
self.device = trainer.device
self.data = trainer.data
model = trainer.ema.ema or trainer.model
self.args.half &= self.device.type != 'cpu'
model = model.half() if self.args.half else model.float()
self.model = model
self.loss = torch.zeros_like(trainer.loss_items, device=trainer.device)
else:
assert model is not None, "Either trainer or model is needed for validation"
self.device = select_device(self.args.device, self.args.batch_size)
self.args.half &= self.device.type != 'cpu'
model = AutoBackend(model, device=self.device, dnn=self.args.dnn, fp16=self.args.half)
self.model = model
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
imgsz = check_imgsz(self.args.imgsz, s=stride)
if engine:
self.args.batch_size = model.batch_size
else:
self.device = model.device
if not (pt or jit):
self.args.batch_size = 1 # export.py models default to batch-size 1
self.logger.info(
f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
if self.args.data.endswith(".yaml"):
data = check_dataset_yaml(self.args.data)
else:
data = check_dataset(self.args.data)
self.dataloader = self.get_dataloader(data.get("val") or data.set("test"), self.args.batch_size)
model.eval()
dt = Profile(), Profile(), Profile(), Profile()
n_batches = len(self.dataloader)
desc = self.get_desc()
# NOTE: keeping this `not self.training` in tqdm will eliminate pbar after finishing segmantation evaluation during training,
# so I removed it, not sure if this will affect classification task cause I saw we use this arg in yolov5/classify/val.py.
# bar = tqdm(self.dataloader, desc, n_batches, not self.training, bar_format=TQDM_BAR_FORMAT)
bar = tqdm(self.dataloader, desc, n_batches, bar_format=TQDM_BAR_FORMAT)
self.init_metrics(de_parallel(model))
with torch.no_grad():
for batch_i, batch in enumerate(bar):
self.batch_i = batch_i
# pre-process
with dt[0]:
batch = self.preprocess(batch)
# inference
with dt[1]:
preds = model(batch["img"])
# loss
with dt[2]:
if self.training:
self.loss += trainer.criterion(preds, batch)[1]
# pre-process predictions
with dt[3]:
preds = self.postprocess(preds)
self.update_metrics(preds, batch)
if self.args.plots and batch_i < 3:
self.plot_val_samples(batch, batch_i)
self.plot_predictions(batch, preds, batch_i)
stats = self.get_stats()
self.check_stats(stats)
self.print_results()
# calculate speed only once when training
if not self.training or trainer.epoch == 0:
t = tuple(x.t / len(self.dataloader.dataset) * 1E3 for x in dt) # speeds per image
self.speed = t
if not self.training: # print only at inference
self.logger.info(
'Speed: %.1fms pre-process, %.1fms inference, %.1fms loss, %.1fms post-process per image' % t)
if self.training:
model.float()
# TODO: implement save json
return stats | trainer.label_loss_items(self.loss.cpu() / len(self.dataloader), prefix="val") \
if self.training else stats
def get_dataloader(self, dataset_path, batch_size):
raise Exception("get_dataloder function not implemented for this validator")
def preprocess(self, batch):
return batch
def postprocess(self, preds):
return preds
def init_metrics(self):
pass
def update_metrics(self, preds, batch):
pass
def get_stats(self):
return {}
def check_stats(self, stats):
pass
def print_results(self):
pass
def get_desc(self):
pass
@property
def metric_keys(self):
return []
# TODO: may need to put these following functions into callback
def plot_val_samples(self, batch, ni):
pass
def plot_predictions(self, batch, preds, ni):
pass