|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
|
|
|
|
import os
|
|
|
|
import re
|
|
|
|
import shutil
|
|
|
|
import socket
|
|
|
|
import sys
|
|
|
|
import tempfile
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
from . import USER_CONFIG_DIR
|
|
|
|
from .torch_utils import TORCH_1_9
|
|
|
|
|
|
|
|
|
|
|
|
def find_free_network_port() -> int:
|
|
|
|
"""Finds a free port on localhost.
|
|
|
|
|
|
|
|
It is useful in single-node training when we don't want to connect to a real main node but have to set the
|
|
|
|
`MASTER_PORT` environment variable.
|
|
|
|
"""
|
|
|
|
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
|
|
|
s.bind(('127.0.0.1', 0))
|
|
|
|
return s.getsockname()[1] # port
|
|
|
|
|
|
|
|
|
|
|
|
def generate_ddp_file(trainer):
|
|
|
|
"""Generates a DDP file and returns its file name."""
|
|
|
|
module, name = f'{trainer.__class__.__module__}.{trainer.__class__.__name__}'.rsplit('.', 1)
|
|
|
|
|
|
|
|
content = f'''cfg = {vars(trainer.args)} \nif __name__ == "__main__":
|
|
|
|
from {module} import {name}
|
|
|
|
|
|
|
|
trainer = {name}(cfg=cfg)
|
|
|
|
trainer.train()'''
|
|
|
|
(USER_CONFIG_DIR / 'DDP').mkdir(exist_ok=True)
|
|
|
|
with tempfile.NamedTemporaryFile(prefix='_temp_',
|
|
|
|
suffix=f'{id(trainer)}.py',
|
|
|
|
mode='w+',
|
|
|
|
encoding='utf-8',
|
|
|
|
dir=USER_CONFIG_DIR / 'DDP',
|
|
|
|
delete=False) as file:
|
|
|
|
file.write(content)
|
|
|
|
return file.name
|
|
|
|
|
|
|
|
|
|
|
|
def generate_ddp_command(world_size, trainer):
|
|
|
|
"""Generates and returns command for distributed training."""
|
|
|
|
import __main__ # noqa local import to avoid https://github.com/Lightning-AI/lightning/issues/15218
|
|
|
|
if not trainer.resume:
|
|
|
|
shutil.rmtree(trainer.save_dir) # remove the save_dir
|
|
|
|
file = str(Path(sys.argv[0]).resolve())
|
|
|
|
safe_pattern = re.compile(r'^[a-zA-Z0-9_. /\\-]{1,128}$') # allowed characters and maximum of 100 characters
|
|
|
|
if not (safe_pattern.match(file) and Path(file).exists() and file.endswith('.py')): # using CLI
|
|
|
|
file = generate_ddp_file(trainer)
|
|
|
|
dist_cmd = 'torch.distributed.run' if TORCH_1_9 else 'torch.distributed.launch'
|
|
|
|
port = find_free_network_port()
|
|
|
|
exclude_args = ['save_dir']
|
|
|
|
args = [f'{k}={v}' for k, v in vars(trainer.args).items() if k not in exclude_args]
|
|
|
|
cmd = [sys.executable, '-m', dist_cmd, '--nproc_per_node', f'{world_size}', '--master_port', f'{port}', file] + args
|
|
|
|
return cmd, file
|
|
|
|
|
|
|
|
|
|
|
|
def ddp_cleanup(trainer, file):
|
|
|
|
"""Delete temp file if created."""
|
|
|
|
if f'{id(trainer)}.py' in file: # if temp_file suffix in file
|
|
|
|
os.remove(file)
|