You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

68 lines
2.4 KiB

# Ultralytics YOLO 🚀, GPL-3.0 license
from ultralytics.yolo.data import build_classification_dataloader
from ultralytics.yolo.engine.validator import BaseValidator
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER
from ultralytics.yolo.utils.metrics import ClassifyMetrics
class ClassificationValidator(BaseValidator):
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None):
super().__init__(dataloader, save_dir, pbar, args)
self.args.task = 'classify'
self.metrics = ClassifyMetrics()
def get_desc(self):
return ('%22s' + '%11s' * 2) % ('classes', 'top1_acc', 'top5_acc')
def init_metrics(self, model):
self.pred = []
self.targets = []
def preprocess(self, batch):
batch['img'] = batch['img'].to(self.device, non_blocking=True)
batch['img'] = batch['img'].half() if self.args.half else batch['img'].float()
batch['cls'] = batch['cls'].to(self.device)
return batch
def update_metrics(self, preds, batch):
n5 = min(len(self.model.names), 5)
self.pred.append(preds.argsort(1, descending=True)[:, :n5])
self.targets.append(batch['cls'])
def finalize_metrics(self, *args, **kwargs):
self.metrics.speed = self.speed
# self.metrics.confusion_matrix = self.confusion_matrix # TODO: classification ConfusionMatrix
def get_stats(self):
self.metrics.process(self.targets, self.pred)
return self.metrics.results_dict
def get_dataloader(self, dataset_path, batch_size):
return build_classification_dataloader(path=dataset_path,
imgsz=self.args.imgsz,
batch_size=batch_size,
workers=self.args.workers)
def print_results(self):
pf = '%22s' + '%11.3g' * len(self.metrics.keys) # print format
LOGGER.info(pf % ('all', self.metrics.top1, self.metrics.top5))
def val(cfg=DEFAULT_CFG, use_python=False):
model = cfg.model or 'yolov8n-cls.pt' # or "resnet18"
data = cfg.data or 'mnist160'
args = dict(model=model, data=data)
if use_python:
from ultralytics import YOLO
YOLO(model).val(**args)
else:
validator = ClassificationValidator(args=args)
validator(model=args['model'])
if __name__ == '__main__':
val()