|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
"""
|
|
|
|
Module utils
|
|
|
|
"""
|
|
|
|
|
|
|
|
import copy
|
|
|
|
import math
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from torch.nn.init import uniform_
|
|
|
|
|
|
|
|
__all__ = 'multi_scale_deformable_attn_pytorch', 'inverse_sigmoid'
|
|
|
|
|
|
|
|
|
|
|
|
def _get_clones(module, n):
|
|
|
|
return nn.ModuleList([copy.deepcopy(module) for _ in range(n)])
|
|
|
|
|
|
|
|
|
|
|
|
def bias_init_with_prob(prior_prob=0.01):
|
|
|
|
"""initialize conv/fc bias value according to a given probability value."""
|
|
|
|
return float(-np.log((1 - prior_prob) / prior_prob)) # return bias_init
|
|
|
|
|
|
|
|
|
|
|
|
def linear_init_(module):
|
|
|
|
bound = 1 / math.sqrt(module.weight.shape[0])
|
|
|
|
uniform_(module.weight, -bound, bound)
|
|
|
|
if hasattr(module, 'bias') and module.bias is not None:
|
|
|
|
uniform_(module.bias, -bound, bound)
|
|
|
|
|
|
|
|
|
|
|
|
def inverse_sigmoid(x, eps=1e-5):
|
|
|
|
x = x.clamp(min=0, max=1)
|
|
|
|
x1 = x.clamp(min=eps)
|
|
|
|
x2 = (1 - x).clamp(min=eps)
|
|
|
|
return torch.log(x1 / x2)
|
|
|
|
|
|
|
|
|
|
|
|
def multi_scale_deformable_attn_pytorch(value: torch.Tensor, value_spatial_shapes: torch.Tensor,
|
|
|
|
sampling_locations: torch.Tensor,
|
|
|
|
attention_weights: torch.Tensor) -> torch.Tensor:
|
|
|
|
"""
|
|
|
|
Multi-scale deformable attention.
|
|
|
|
https://github.com/IDEA-Research/detrex/blob/main/detrex/layers/multi_scale_deform_attn.py
|
|
|
|
"""
|
|
|
|
|
|
|
|
bs, _, num_heads, embed_dims = value.shape
|
|
|
|
_, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
|
|
|
|
value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1)
|
|
|
|
sampling_grids = 2 * sampling_locations - 1
|
|
|
|
sampling_value_list = []
|
|
|
|
for level, (H_, W_) in enumerate(value_spatial_shapes):
|
|
|
|
# bs, H_*W_, num_heads, embed_dims ->
|
|
|
|
# bs, H_*W_, num_heads*embed_dims ->
|
|
|
|
# bs, num_heads*embed_dims, H_*W_ ->
|
|
|
|
# bs*num_heads, embed_dims, H_, W_
|
|
|
|
value_l_ = (value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_))
|
|
|
|
# bs, num_queries, num_heads, num_points, 2 ->
|
|
|
|
# bs, num_heads, num_queries, num_points, 2 ->
|
|
|
|
# bs*num_heads, num_queries, num_points, 2
|
|
|
|
sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1)
|
|
|
|
# bs*num_heads, embed_dims, num_queries, num_points
|
|
|
|
sampling_value_l_ = F.grid_sample(value_l_,
|
|
|
|
sampling_grid_l_,
|
|
|
|
mode='bilinear',
|
|
|
|
padding_mode='zeros',
|
|
|
|
align_corners=False)
|
|
|
|
sampling_value_list.append(sampling_value_l_)
|
|
|
|
# (bs, num_queries, num_heads, num_levels, num_points) ->
|
|
|
|
# (bs, num_heads, num_queries, num_levels, num_points) ->
|
|
|
|
# (bs, num_heads, 1, num_queries, num_levels*num_points)
|
|
|
|
attention_weights = attention_weights.transpose(1, 2).reshape(bs * num_heads, 1, num_queries,
|
|
|
|
num_levels * num_points)
|
|
|
|
output = ((torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights).sum(-1).view(
|
|
|
|
bs, num_heads * embed_dims, num_queries))
|
|
|
|
return output.transpose(1, 2).contiguous()
|