You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

64 lines
2.1 KiB

"""
Top-level YOLO model interface. First principle usage example - https://github.com/ultralytics/ultralytics/issues/13
"""
import torch
import yaml
import ultralytics.yolo as yolo
from ultralytics.yolo.utils import LOGGER
from ultralytics.yolo.utils.checks import check_yaml
from ultralytics.yolo.utils.modeling.tasks import ClassificationModel, DetectionModel, SegmentationModel
# map head: [model, trainer]
MODEL_MAP = {
"Classify": [ClassificationModel, 'yolo.VERSION.classify.train.ClassificationTrainer'],
"Detect": [ClassificationModel, 'yolo.VERSION.classify.train.ClassificationTrainer'], # temp
"Segment": []}
class YOLO:
def __init__(self, version=8) -> None:
self.version = version
self.model = None
self.trainer = None
self.pretrained_weights = None
def new(self, cfg: str):
cfg = check_yaml(cfg) # check YAML
self.model, self.trainer = self._get_model_and_trainer(cfg)
def load(self, weights, autodownload=True):
if not isinstance(self.pretrained_weights, type(None)):
LOGGER.info("Overwriting weights")
# TODO: weights = smart_file_loader(weights)
if self.model:
self.model.load(weights)
LOGGER.info("Checkpoint loaded successfully")
else:
# TODO: infer model and trainer
pass
self.pretrained_weights = weights
def reset(self):
pass
def train(self, **kwargs):
if 'data' not in kwargs:
raise Exception("data is required to train")
if not self.model:
raise Exception("model not initialized. Use .new() or .load()")
kwargs["model"] = self.model
trainer = self.trainer(overrides=kwargs)
trainer.train()
def _get_model_and_trainer(self, cfg):
with open(cfg, encoding='ascii', errors='ignore') as f:
cfg = yaml.safe_load(f) # model dict
model, trainer = MODEL_MAP[cfg["head"][-1][-2]]
# warning: eval is unsafe. Use with caution
trainer = eval(trainer.replace("VERSION", f"v{self.version}"))
return model(cfg), trainer