|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
# YOLOv6 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/models/yolov6
|
|
|
|
|
|
|
|
# Parameters
|
|
|
|
act: nn.ReLU()
|
|
|
|
nc: 80 # number of classes
|
|
|
|
scales: # model compound scaling constants, i.e. 'model=yolov6n.yaml' will call yolov8.yaml with scale 'n'
|
|
|
|
# [depth, width, max_channels]
|
|
|
|
n: [0.33, 0.25, 1024]
|
|
|
|
s: [0.33, 0.50, 1024]
|
|
|
|
m: [0.67, 0.75, 768]
|
|
|
|
l: [1.00, 1.00, 512]
|
|
|
|
x: [1.00, 1.25, 512]
|
|
|
|
|
|
|
|
# YOLOv6-3.0s backbone
|
|
|
|
backbone:
|
|
|
|
# [from, repeats, module, args]
|
|
|
|
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
|
|
|
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
|
|
|
- [-1, 6, Conv, [128, 3, 1]]
|
|
|
|
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
|
|
|
- [-1, 12, Conv, [256, 3, 1]]
|
|
|
|
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
|
|
|
- [-1, 18, Conv, [512, 3, 1]]
|
|
|
|
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
|
|
|
- [-1, 6, Conv, [1024, 3, 1]]
|
|
|
|
- [-1, 1, SPPF, [1024, 5]] # 9
|
|
|
|
|
|
|
|
# YOLOv6-3.0s head
|
|
|
|
head:
|
|
|
|
- [-1, 1, Conv, [256, 1, 1]]
|
|
|
|
- [-1, 1, nn.ConvTranspose2d, [256, 2, 2, 0]]
|
|
|
|
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
|
|
|
- [-1, 1, Conv, [256, 3, 1]]
|
|
|
|
- [-1, 9, Conv, [256, 3, 1]] # 14
|
|
|
|
|
|
|
|
- [-1, 1, Conv, [128, 1, 1]]
|
|
|
|
- [-1, 1, nn.ConvTranspose2d, [128, 2, 2, 0]]
|
|
|
|
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
|
|
|
- [-1, 1, Conv, [128, 3, 1]]
|
|
|
|
- [-1, 9, Conv, [128, 3, 1]] # 19
|
|
|
|
|
|
|
|
- [-1, 1, Conv, [128, 3, 2]]
|
|
|
|
- [[-1, 15], 1, Concat, [1]] # cat head P4
|
|
|
|
- [-1, 1, Conv, [256, 3, 1]]
|
|
|
|
- [-1, 9, Conv, [256, 3, 1]] # 23
|
|
|
|
|
|
|
|
- [-1, 1, Conv, [256, 3, 2]]
|
|
|
|
- [[-1, 10], 1, Concat, [1]] # cat head P5
|
|
|
|
- [-1, 1, Conv, [512, 3, 1]]
|
|
|
|
- [-1, 9, Conv, [512, 3, 1]] # 27
|
|
|
|
|
|
|
|
- [[19, 23, 27], 1, Detect, [nc]] # Detect(P3, P4, P5)
|