|
|
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
# YOLOv5 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov5
|
|
|
|
|
|
|
|
# Parameters
|
|
|
|
nc: 80 # number of classes
|
|
|
|
scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'
|
|
|
|
# [depth, width, max_channels]
|
|
|
|
n: [0.33, 0.25, 1024]
|
|
|
|
s: [0.33, 0.50, 1024]
|
|
|
|
m: [0.67, 0.75, 1024]
|
|
|
|
l: [1.00, 1.00, 1024]
|
|
|
|
x: [1.33, 1.25, 1024]
|
|
|
|
|
|
|
|
# YOLOv5 v6.0 backbone
|
|
|
|
backbone:
|
|
|
|
# [from, number, module, args]
|
|
|
|
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
|
|
|
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
|
|
|
[-1, 3, C3, [128]],
|
|
|
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
|
|
|
[-1, 6, C3, [256]],
|
|
|
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
|
|
|
[-1, 9, C3, [512]],
|
|
|
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
|
|
|
[-1, 3, C3, [1024]],
|
|
|
|
[-1, 1, SPPF, [1024, 5]], # 9
|
|
|
|
]
|
|
|
|
|
|
|
|
# YOLOv5 v6.0 head
|
|
|
|
head:
|
|
|
|
[[-1, 1, Conv, [512, 1, 1]],
|
|
|
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
|
|
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
|
|
|
[-1, 3, C3, [512, False]], # 13
|
|
|
|
|
|
|
|
[-1, 1, Conv, [256, 1, 1]],
|
|
|
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
|
|
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
|
|
|
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
|
|
|
|
|
|
|
[-1, 1, Conv, [256, 3, 2]],
|
|
|
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
|
|
|
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
|
|
|
|
|
|
|
[-1, 1, Conv, [512, 3, 2]],
|
|
|
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
|
|
|
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
|
|
|
|
|
|
|
[[17, 20, 23], 1, Detect, [nc]], # Detect(P3, P4, P5)
|
|
|
|
]
|