You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

329 lines
14 KiB

# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
Benchmark a YOLO model formats for speed and accuracy
Usage:
from ultralytics.yolo.utils.benchmarks import ProfileModels, benchmark
ProfileModels(['yolov8n.yaml', 'yolov8s.yaml']).profile()
run_benchmarks(model='yolov8n.pt', imgsz=160)
Format | `format=argument` | Model
--- | --- | ---
PyTorch | - | yolov8n.pt
TorchScript | `torchscript` | yolov8n.torchscript
ONNX | `onnx` | yolov8n.onnx
OpenVINO | `openvino` | yolov8n_openvino_model/
TensorRT | `engine` | yolov8n.engine
CoreML | `coreml` | yolov8n.mlmodel
TensorFlow SavedModel | `saved_model` | yolov8n_saved_model/
TensorFlow GraphDef | `pb` | yolov8n.pb
TensorFlow Lite | `tflite` | yolov8n.tflite
TensorFlow Edge TPU | `edgetpu` | yolov8n_edgetpu.tflite
TensorFlow.js | `tfjs` | yolov8n_web_model/
PaddlePaddle | `paddle` | yolov8n_paddle_model/
"""
import glob
import platform
import time
from pathlib import Path
import numpy as np
import torch.cuda
from tqdm import tqdm
from ultralytics import YOLO
from ultralytics.yolo.engine.exporter import export_formats
from ultralytics.yolo.utils import LINUX, LOGGER, MACOS, ROOT, SETTINGS
from ultralytics.yolo.utils.checks import check_requirements, check_yolo
from ultralytics.yolo.utils.downloads import download
from ultralytics.yolo.utils.files import file_size
from ultralytics.yolo.utils.torch_utils import select_device
def benchmark(model=Path(SETTINGS['weights_dir']) / 'yolov8n.pt',
imgsz=160,
half=False,
int8=False,
device='cpu',
hard_fail=False):
"""
Benchmark a YOLO model across different formats for speed and accuracy.
Args:
model (Union[str, Path], optional): Path to the model file or directory. Default is
Path(SETTINGS['weights_dir']) / 'yolov8n.pt'.
imgsz (int, optional): Image size for the benchmark. Default is 160.
half (bool, optional): Use half-precision for the model if True. Default is False.
int8 (bool, optional): Use int8-precision for the model if True. Default is False.
device (str, optional): Device to run the benchmark on, either 'cpu' or 'cuda'. Default is 'cpu'.
hard_fail (Union[bool, float], optional): If True or a float, assert benchmarks pass with given metric.
Default is False.
Returns:
df (pandas.DataFrame): A pandas DataFrame with benchmark results for each format, including file size,
metric, and inference time.
"""
import pandas as pd
pd.options.display.max_columns = 10
pd.options.display.width = 120
device = select_device(device, verbose=False)
if isinstance(model, (str, Path)):
model = YOLO(model)
y = []
t0 = time.time()
for i, (name, format, suffix, cpu, gpu) in export_formats().iterrows(): # index, (name, format, suffix, CPU, GPU)
emoji, filename = '', None # export defaults
try:
assert i != 9 or LINUX, 'Edge TPU export only supported on Linux'
if i == 10:
assert MACOS or LINUX, 'TF.js export only supported on macOS and Linux'
if 'cpu' in device.type:
assert cpu, 'inference not supported on CPU'
if 'cuda' in device.type:
assert gpu, 'inference not supported on GPU'
# Export
if format == '-':
filename = model.ckpt_path or model.cfg
export = model # PyTorch format
else:
filename = model.export(imgsz=imgsz, format=format, half=half, int8=int8, device=device) # all others
export = YOLO(filename, task=model.task)
assert suffix in str(filename), 'export failed'
emoji = '' # indicates export succeeded
# Predict
assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported
assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML
if not (ROOT / 'assets/bus.jpg').exists():
download(url='https://ultralytics.com/images/bus.jpg', dir=ROOT / 'assets')
export.predict(ROOT / 'assets/bus.jpg', imgsz=imgsz, device=device, half=half)
# Validate
if model.task == 'detect':
data, key = 'coco8.yaml', 'metrics/mAP50-95(B)'
elif model.task == 'segment':
data, key = 'coco8-seg.yaml', 'metrics/mAP50-95(M)'
elif model.task == 'classify':
data, key = 'imagenet100', 'metrics/accuracy_top5'
elif model.task == 'pose':
data, key = 'coco8-pose.yaml', 'metrics/mAP50-95(P)'
results = export.val(data=data,
batch=1,
imgsz=imgsz,
plots=False,
device=device,
half=half,
int8=int8,
verbose=False)
metric, speed = results.results_dict[key], results.speed['inference']
y.append([name, '', round(file_size(filename), 1), round(metric, 4), round(speed, 2)])
except Exception as e:
if hard_fail:
assert type(e) is AssertionError, f'Benchmark hard_fail for {name}: {e}'
LOGGER.warning(f'ERROR ❌️ Benchmark failure for {name}: {e}')
y.append([name, emoji, round(file_size(filename), 1), None, None]) # mAP, t_inference
# Print results
check_yolo(device=device) # print system info
df = pd.DataFrame(y, columns=['Format', 'Status❔', 'Size (MB)', key, 'Inference time (ms/im)'])
name = Path(model.ckpt_path).name
s = f'\nBenchmarks complete for {name} on {data} at imgsz={imgsz} ({time.time() - t0:.2f}s)\n{df}\n'
LOGGER.info(s)
with open('benchmarks.log', 'a', errors='ignore', encoding='utf-8') as f:
f.write(s)
if hard_fail and isinstance(hard_fail, float):
metrics = df[key].array # values to compare to floor
floor = hard_fail # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: one or more metric(s) < floor {floor}'
return df
class ProfileModels:
"""
ProfileModels class for profiling different models on ONNX and TensorRT.
This class profiles the performance of different models, provided their paths. The profiling includes parameters such as
model speed and FLOPs.
Attributes:
paths (list): Paths of the models to profile.
num_timed_runs (int): Number of timed runs for the profiling. Default is 100.
num_warmup_runs (int): Number of warmup runs before profiling. Default is 3.
imgsz (int): Image size used in the models. Default is 640.
Methods:
profile(): Profiles the models and prints the result.
"""
def __init__(self, paths: list, num_timed_runs=100, num_warmup_runs=10, imgsz=640, trt=True, device=None):
self.paths = paths
self.num_timed_runs = num_timed_runs
self.num_warmup_runs = num_warmup_runs
self.imgsz = imgsz
self.trt = trt # run TensorRT profiling
self.device = device or torch.device(0 if torch.cuda.is_available() else 'cpu')
def profile(self):
files = self.get_files()
if not files:
print('No matching *.pt or *.onnx files found.')
return
table_rows = []
output = []
for file in files:
engine_file = file.with_suffix('.engine')
if file.suffix in ('.pt', '.yaml'):
model = YOLO(str(file))
model.fuse() # to report correct params and GFLOPs in model.info()
model_info = model.info()
if self.trt and self.device.type != 'cpu' and not engine_file.is_file():
engine_file = model.export(format='engine', half=True, imgsz=self.imgsz, device=self.device)
onnx_file = model.export(format='onnx', half=True, imgsz=self.imgsz, simplify=True, device=self.device)
elif file.suffix == '.onnx':
model_info = self.get_onnx_model_info(file)
onnx_file = file
else:
continue
t_engine = self.profile_tensorrt_model(str(engine_file))
t_onnx = self.profile_onnx_model(str(onnx_file))
table_rows.append(self.generate_table_row(file.stem, t_onnx, t_engine, model_info))
output.append(self.generate_results_dict(file.stem, t_onnx, t_engine, model_info))
self.print_table(table_rows)
return output
def get_files(self):
files = []
for path in self.paths:
path = Path(path)
if path.is_dir():
extensions = ['*.pt', '*.onnx', '*.yaml']
files.extend([file for ext in extensions for file in glob.glob(str(path / ext))])
elif path.suffix in {'.pt', '.yaml'}: # add non-existing
files.append(str(path))
else:
files.extend(glob.glob(str(path)))
print(f'Profiling: {sorted(files)}')
return [Path(file) for file in sorted(files)]
def get_onnx_model_info(self, onnx_file: str):
# return (num_layers, num_params, num_gradients, num_flops)
return 0.0, 0.0, 0.0, 0.0
def iterative_sigma_clipping(self, data, sigma=2, max_iters=3):
data = np.array(data)
for _ in range(max_iters):
mean, std = np.mean(data), np.std(data)
clipped_data = data[(data > mean - sigma * std) & (data < mean + sigma * std)]
if len(clipped_data) == len(data):
break
data = clipped_data
return data
def profile_tensorrt_model(self, engine_file: str):
if not self.trt or not Path(engine_file).is_file():
return 0.0, 0.0
# Warmup runs
model = YOLO(engine_file)
input_data = np.random.rand(self.imgsz, self.imgsz, 3).astype(np.float32) # must be FP32
for _ in range(self.num_warmup_runs):
model(input_data, verbose=False)
# Timed runs
run_times = []
for _ in tqdm(range(self.num_timed_runs * 50), desc=engine_file):
results = model(input_data, verbose=False)
run_times.append(results[0].speed['inference']) # Convert to milliseconds
run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=3) # sigma clipping
return np.mean(run_times), np.std(run_times)
def profile_onnx_model(self, onnx_file: str):
check_requirements('onnxruntime')
import onnxruntime as ort
# Session with either 'TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider'
sess_options = ort.SessionOptions()
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
sess_options.intra_op_num_threads = 8 # Limit the number of threads
sess = ort.InferenceSession(onnx_file, sess_options, providers=['CPUExecutionProvider'])
input_tensor = sess.get_inputs()[0]
input_type = input_tensor.type
# Mapping ONNX datatype to numpy datatype
if 'float16' in input_type:
input_dtype = np.float16
elif 'float' in input_type:
input_dtype = np.float32
elif 'double' in input_type:
input_dtype = np.float64
elif 'int64' in input_type:
input_dtype = np.int64
elif 'int32' in input_type:
input_dtype = np.int32
else:
raise ValueError(f'Unsupported ONNX datatype {input_type}')
input_data = np.random.rand(*input_tensor.shape).astype(input_dtype)
input_name = input_tensor.name
output_name = sess.get_outputs()[0].name
# Warmup runs
for _ in range(self.num_warmup_runs):
sess.run([output_name], {input_name: input_data})
# Timed runs
run_times = []
for _ in tqdm(range(self.num_timed_runs), desc=onnx_file):
start_time = time.time()
sess.run([output_name], {input_name: input_data})
run_times.append((time.time() - start_time) * 1000) # Convert to milliseconds
run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=5) # sigma clipping
return np.mean(run_times), np.std(run_times)
def generate_table_row(self, model_name, t_onnx, t_engine, model_info):
layers, params, gradients, flops = model_info
return f'| {model_name:18s} | {self.imgsz} | - | {t_onnx[0]:.2f} ± {t_onnx[1]:.2f} ms | {t_engine[0]:.2f} ± {t_engine[1]:.2f} ms | {params / 1e6:.1f} | {flops:.1f} |'
def generate_results_dict(self, model_name, t_onnx, t_engine, model_info):
layers, params, gradients, flops = model_info
return {
'model/name': model_name,
'model/parameters': params,
'model/GFLOPs': round(flops, 3),
'model/speed_ONNX(ms)': round(t_onnx[0], 3),
'model/speed_TensorRT(ms)': round(t_engine[0], 3)}
def print_table(self, table_rows):
gpu = torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'GPU'
header = f'| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>{gpu} TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |'
separator = '|-------------|---------------------|--------------------|------------------------------|-----------------------------------|------------------|-----------------|'
print(f'\n\n{header}')
print(separator)
for row in table_rows:
print(row)
if __name__ == '__main__':
# Benchmark all export formats
benchmark()
# Profiling models on ONNX and TensorRT
ProfileModels(['yolov8n.yaml', 'yolov8s.yaml'])