You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

307 lines
13 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_BACKGROUND_SEGM_HPP__
#define __OPENCV_BACKGROUND_SEGM_HPP__
#include "opencv2/core.hpp"
namespace cv
{
//! @addtogroup video_motion
//! @{
/** @brief Base class for background/foreground segmentation. :
The class is only used to define the common interface for the whole family of background/foreground
segmentation algorithms.
*/
class CV_EXPORTS_W BackgroundSubtractor : public Algorithm
{
public:
/** @brief Computes a foreground mask.
@param image Next video frame.
@param fgmask The output foreground mask as an 8-bit binary image.
@param learningRate The value between 0 and 1 that indicates how fast the background model is
learnt. Negative parameter value makes the algorithm to use some automatically chosen learning
rate. 0 means that the background model is not updated at all, 1 means that the background model
is completely reinitialized from the last frame.
*/
CV_WRAP virtual void apply(InputArray image, OutputArray fgmask, double learningRate=-1) = 0;
/** @brief Computes a background image.
@param backgroundImage The output background image.
@note Sometimes the background image can be very blurry, as it contain the average background
statistics.
*/
CV_WRAP virtual void getBackgroundImage(OutputArray backgroundImage) const = 0;
};
/** @brief Gaussian Mixture-based Background/Foreground Segmentation Algorithm.
The class implements the Gaussian mixture model background subtraction described in @cite Zivkovic2004
and @cite Zivkovic2006 .
*/
class CV_EXPORTS_W BackgroundSubtractorMOG2 : public BackgroundSubtractor
{
public:
/** @brief Returns the number of last frames that affect the background model
*/
CV_WRAP virtual int getHistory() const = 0;
/** @brief Sets the number of last frames that affect the background model
*/
CV_WRAP virtual void setHistory(int history) = 0;
/** @brief Returns the number of gaussian components in the background model
*/
CV_WRAP virtual int getNMixtures() const = 0;
/** @brief Sets the number of gaussian components in the background model.
The model needs to be reinitalized to reserve memory.
*/
CV_WRAP virtual void setNMixtures(int nmixtures) = 0;//needs reinitialization!
/** @brief Returns the "background ratio" parameter of the algorithm
If a foreground pixel keeps semi-constant value for about backgroundRatio\*history frames, it's
considered background and added to the model as a center of a new component. It corresponds to TB
parameter in the paper.
*/
CV_WRAP virtual double getBackgroundRatio() const = 0;
/** @brief Sets the "background ratio" parameter of the algorithm
*/
CV_WRAP virtual void setBackgroundRatio(double ratio) = 0;
/** @brief Returns the variance threshold for the pixel-model match
The main threshold on the squared Mahalanobis distance to decide if the sample is well described by
the background model or not. Related to Cthr from the paper.
*/
CV_WRAP virtual double getVarThreshold() const = 0;
/** @brief Sets the variance threshold for the pixel-model match
*/
CV_WRAP virtual void setVarThreshold(double varThreshold) = 0;
/** @brief Returns the variance threshold for the pixel-model match used for new mixture component generation
Threshold for the squared Mahalanobis distance that helps decide when a sample is close to the
existing components (corresponds to Tg in the paper). If a pixel is not close to any component, it
is considered foreground or added as a new component. 3 sigma =\> Tg=3\*3=9 is default. A smaller Tg
value generates more components. A higher Tg value may result in a small number of components but
they can grow too large.
*/
CV_WRAP virtual double getVarThresholdGen() const = 0;
/** @brief Sets the variance threshold for the pixel-model match used for new mixture component generation
*/
CV_WRAP virtual void setVarThresholdGen(double varThresholdGen) = 0;
/** @brief Returns the initial variance of each gaussian component
*/
CV_WRAP virtual double getVarInit() const = 0;
/** @brief Sets the initial variance of each gaussian component
*/
CV_WRAP virtual void setVarInit(double varInit) = 0;
CV_WRAP virtual double getVarMin() const = 0;
CV_WRAP virtual void setVarMin(double varMin) = 0;
CV_WRAP virtual double getVarMax() const = 0;
CV_WRAP virtual void setVarMax(double varMax) = 0;
/** @brief Returns the complexity reduction threshold
This parameter defines the number of samples needed to accept to prove the component exists. CT=0.05
is a default value for all the samples. By setting CT=0 you get an algorithm very similar to the
standard Stauffer&Grimson algorithm.
*/
CV_WRAP virtual double getComplexityReductionThreshold() const = 0;
/** @brief Sets the complexity reduction threshold
*/
CV_WRAP virtual void setComplexityReductionThreshold(double ct) = 0;
/** @brief Returns the shadow detection flag
If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorMOG2 for
details.
*/
CV_WRAP virtual bool getDetectShadows() const = 0;
/** @brief Enables or disables shadow detection
*/
CV_WRAP virtual void setDetectShadows(bool detectShadows) = 0;
/** @brief Returns the shadow value
Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0
in the mask always means background, 255 means foreground.
*/
CV_WRAP virtual int getShadowValue() const = 0;
/** @brief Sets the shadow value
*/
CV_WRAP virtual void setShadowValue(int value) = 0;
/** @brief Returns the shadow threshold
A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in
the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel
is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiarra,
*Detecting Moving Shadows...*, IEEE PAMI,2003.
*/
CV_WRAP virtual double getShadowThreshold() const = 0;
/** @brief Sets the shadow threshold
*/
CV_WRAP virtual void setShadowThreshold(double threshold) = 0;
};
/** @brief Creates MOG2 Background Subtractor
@param history Length of the history.
@param varThreshold Threshold on the squared Mahalanobis distance between the pixel and the model
to decide whether a pixel is well described by the background model. This parameter does not
affect the background update.
@param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the
speed a bit, so if you do not need this feature, set the parameter to false.
*/
CV_EXPORTS_W Ptr<BackgroundSubtractorMOG2>
createBackgroundSubtractorMOG2(int history=500, double varThreshold=16,
bool detectShadows=true);
/** @brief K-nearest neigbours - based Background/Foreground Segmentation Algorithm.
The class implements the K-nearest neigbours background subtraction described in @cite Zivkovic2006 .
Very efficient if number of foreground pixels is low.
*/
class CV_EXPORTS_W BackgroundSubtractorKNN : public BackgroundSubtractor
{
public:
/** @brief Returns the number of last frames that affect the background model
*/
CV_WRAP virtual int getHistory() const = 0;
/** @brief Sets the number of last frames that affect the background model
*/
CV_WRAP virtual void setHistory(int history) = 0;
/** @brief Returns the number of data samples in the background model
*/
CV_WRAP virtual int getNSamples() const = 0;
/** @brief Sets the number of data samples in the background model.
The model needs to be reinitalized to reserve memory.
*/
CV_WRAP virtual void setNSamples(int _nN) = 0;//needs reinitialization!
/** @brief Returns the threshold on the squared distance between the pixel and the sample
The threshold on the squared distance between the pixel and the sample to decide whether a pixel is
close to a data sample.
*/
CV_WRAP virtual double getDist2Threshold() const = 0;
/** @brief Sets the threshold on the squared distance
*/
CV_WRAP virtual void setDist2Threshold(double _dist2Threshold) = 0;
/** @brief Returns the number of neighbours, the k in the kNN.
K is the number of samples that need to be within dist2Threshold in order to decide that that
pixel is matching the kNN background model.
*/
CV_WRAP virtual int getkNNSamples() const = 0;
/** @brief Sets the k in the kNN. How many nearest neigbours need to match.
*/
CV_WRAP virtual void setkNNSamples(int _nkNN) = 0;
/** @brief Returns the shadow detection flag
If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorKNN for
details.
*/
CV_WRAP virtual bool getDetectShadows() const = 0;
/** @brief Enables or disables shadow detection
*/
CV_WRAP virtual void setDetectShadows(bool detectShadows) = 0;
/** @brief Returns the shadow value
Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0
in the mask always means background, 255 means foreground.
*/
CV_WRAP virtual int getShadowValue() const = 0;
/** @brief Sets the shadow value
*/
CV_WRAP virtual void setShadowValue(int value) = 0;
/** @brief Returns the shadow threshold
A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in
the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel
is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiarra,
*Detecting Moving Shadows...*, IEEE PAMI,2003.
*/
CV_WRAP virtual double getShadowThreshold() const = 0;
/** @brief Sets the shadow threshold
*/
CV_WRAP virtual void setShadowThreshold(double threshold) = 0;
};
/** @brief Creates KNN Background Subtractor
@param history Length of the history.
@param dist2Threshold Threshold on the squared distance between the pixel and the sample to decide
whether a pixel is close to that sample. This parameter does not affect the background update.
@param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the
speed a bit, so if you do not need this feature, set the parameter to false.
*/
CV_EXPORTS_W Ptr<BackgroundSubtractorKNN>
createBackgroundSubtractorKNN(int history=500, double dist2Threshold=400.0,
bool detectShadows=true);
//! @} video_motion
} // cv
#endif