You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

676 lines
22 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2015, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_DEF_H__
#define __OPENCV_DEF_H__
#if !defined _CRT_SECURE_NO_DEPRECATE && defined _MSC_VER && _MSC_VER > 1300
# define _CRT_SECURE_NO_DEPRECATE /* to avoid multiple Visual Studio warnings */
#endif
#include <limits.h>
#if defined __ICL
# define CV_ICC __ICL
#elif defined __ICC
# define CV_ICC __ICC
#elif defined __ECL
# define CV_ICC __ECL
#elif defined __ECC
# define CV_ICC __ECC
#elif defined __INTEL_COMPILER
# define CV_ICC __INTEL_COMPILER
#endif
#ifndef CV_INLINE
# if defined __cplusplus
# define CV_INLINE static inline
# elif defined _MSC_VER
# define CV_INLINE __inline
# else
# define CV_INLINE static
# endif
#endif
#if defined CV_ICC && !defined CV_ENABLE_UNROLLED
# define CV_ENABLE_UNROLLED 0
#else
# define CV_ENABLE_UNROLLED 1
#endif
#ifdef __GNUC__
# define CV_DECL_ALIGNED(x) __attribute__ ((aligned (x)))
#elif defined _MSC_VER
# define CV_DECL_ALIGNED(x) __declspec(align(x))
#else
# define CV_DECL_ALIGNED(x)
#endif
/* CPU features and intrinsics support */
#define CV_CPU_NONE 0
#define CV_CPU_MMX 1
#define CV_CPU_SSE 2
#define CV_CPU_SSE2 3
#define CV_CPU_SSE3 4
#define CV_CPU_SSSE3 5
#define CV_CPU_SSE4_1 6
#define CV_CPU_SSE4_2 7
#define CV_CPU_POPCNT 8
#define CV_CPU_AVX 10
#define CV_CPU_AVX2 11
#define CV_CPU_FMA3 12
#define CV_CPU_AVX_512F 13
#define CV_CPU_AVX_512BW 14
#define CV_CPU_AVX_512CD 15
#define CV_CPU_AVX_512DQ 16
#define CV_CPU_AVX_512ER 17
#define CV_CPU_AVX_512IFMA512 18
#define CV_CPU_AVX_512PF 19
#define CV_CPU_AVX_512VBMI 20
#define CV_CPU_AVX_512VL 21
#define CV_CPU_NEON 100
// when adding to this list remember to update the enum in core/utility.cpp
#define CV_HARDWARE_MAX_FEATURE 255
// do not include SSE/AVX/NEON headers for NVCC compiler
#ifndef __CUDACC__
#if defined __SSE2__ || defined _M_X64 || (defined _M_IX86_FP && _M_IX86_FP >= 2)
# include <emmintrin.h>
# define CV_MMX 1
# define CV_SSE 1
# define CV_SSE2 1
# if defined __SSE3__ || (defined _MSC_VER && _MSC_VER >= 1500)
# include <pmmintrin.h>
# define CV_SSE3 1
# endif
# if defined __SSSE3__ || (defined _MSC_VER && _MSC_VER >= 1500)
# include <tmmintrin.h>
# define CV_SSSE3 1
# endif
# if defined __SSE4_1__ || (defined _MSC_VER && _MSC_VER >= 1500)
# include <smmintrin.h>
# define CV_SSE4_1 1
# endif
# if defined __SSE4_2__ || (defined _MSC_VER && _MSC_VER >= 1500)
# include <nmmintrin.h>
# define CV_SSE4_2 1
# endif
# if defined __POPCNT__ || (defined _MSC_VER && _MSC_VER >= 1500)
# ifdef _MSC_VER
# include <nmmintrin.h>
# else
# include <popcntintrin.h>
# endif
# define CV_POPCNT 1
# endif
# if defined __AVX__ || (defined _MSC_VER && _MSC_VER >= 1600 && 0)
// MS Visual Studio 2010 (2012?) has no macro pre-defined to identify the use of /arch:AVX
// See: http://connect.microsoft.com/VisualStudio/feedback/details/605858/arch-avx-should-define-a-predefined-macro-in-x64-and-set-a-unique-value-for-m-ix86-fp-in-win32
# include <immintrin.h>
# define CV_AVX 1
# if defined(_XCR_XFEATURE_ENABLED_MASK)
# define __xgetbv() _xgetbv(_XCR_XFEATURE_ENABLED_MASK)
# else
# define __xgetbv() 0
# endif
# endif
# if defined __AVX2__ || (defined _MSC_VER && _MSC_VER >= 1800 && 0)
# include <immintrin.h>
# define CV_AVX2 1
# if defined __FMA__
# define CV_FMA3 1
# endif
# endif
#endif
#if (defined WIN32 || defined _WIN32) && defined(_M_ARM)
# include <Intrin.h>
# include "arm_neon.h"
# define CV_NEON 1
# define CPU_HAS_NEON_FEATURE (true)
#elif defined(__ARM_NEON__) || (defined (__ARM_NEON) && defined(__aarch64__))
# include <arm_neon.h>
# define CV_NEON 1
#endif
#if defined __GNUC__ && defined __arm__ && (defined __ARM_PCS_VFP || defined __ARM_VFPV3__)
# define CV_VFP 1
#endif
#endif // __CUDACC__
#ifndef CV_POPCNT
#define CV_POPCNT 0
#endif
#ifndef CV_MMX
# define CV_MMX 0
#endif
#ifndef CV_SSE
# define CV_SSE 0
#endif
#ifndef CV_SSE2
# define CV_SSE2 0
#endif
#ifndef CV_SSE3
# define CV_SSE3 0
#endif
#ifndef CV_SSSE3
# define CV_SSSE3 0
#endif
#ifndef CV_SSE4_1
# define CV_SSE4_1 0
#endif
#ifndef CV_SSE4_2
# define CV_SSE4_2 0
#endif
#ifndef CV_AVX
# define CV_AVX 0
#endif
#ifndef CV_AVX2
# define CV_AVX2 0
#endif
#ifndef CV_FMA3
# define CV_FMA3 0
#endif
#ifndef CV_AVX_512F
# define CV_AVX_512F 0
#endif
#ifndef CV_AVX_512BW
# define CV_AVX_512BW 0
#endif
#ifndef CV_AVX_512CD
# define CV_AVX_512CD 0
#endif
#ifndef CV_AVX_512DQ
# define CV_AVX_512DQ 0
#endif
#ifndef CV_AVX_512ER
# define CV_AVX_512ER 0
#endif
#ifndef CV_AVX_512IFMA512
# define CV_AVX_512IFMA512 0
#endif
#ifndef CV_AVX_512PF
# define CV_AVX_512PF 0
#endif
#ifndef CV_AVX_512VBMI
# define CV_AVX_512VBMI 0
#endif
#ifndef CV_AVX_512VL
# define CV_AVX_512VL 0
#endif
#ifndef CV_NEON
# define CV_NEON 0
#endif
#ifndef CV_VFP
# define CV_VFP 0
#endif
/* primitive types */
/*
schar - signed 1 byte integer
uchar - unsigned 1 byte integer
short - signed 2 byte integer
ushort - unsigned 2 byte integer
int - signed 4 byte integer
uint - unsigned 4 byte integer
int64 - signed 8 byte integer
uint64 - unsigned 8 byte integer
*/
#if !defined _MSC_VER && !defined __BORLANDC__
# if defined __cplusplus && __cplusplus >= 201103L
# include <cstdint>
typedef std::uint32_t uint;
# else
# include <stdint.h>
typedef uint32_t uint;
# endif
#else
typedef unsigned uint;
#endif
typedef signed char schar;
#ifndef __IPL_H__
typedef unsigned char uchar;
typedef unsigned short ushort;
#endif
#if defined _MSC_VER || defined __BORLANDC__
typedef __int64 int64;
typedef unsigned __int64 uint64;
# define CV_BIG_INT(n) n##I64
# define CV_BIG_UINT(n) n##UI64
#else
typedef int64_t int64;
typedef uint64_t uint64;
# define CV_BIG_INT(n) n##LL
# define CV_BIG_UINT(n) n##ULL
#endif
/* fundamental constants */
#define CV_PI 3.1415926535897932384626433832795
#define CV_2PI 6.283185307179586476925286766559
#define CV_LOG2 0.69314718055994530941723212145818
typedef union Cv32suf
{
int i;
unsigned u;
float f;
}
Cv32suf;
typedef union Cv64suf
{
int64 i;
uint64 u;
double f;
}
Cv64suf;
/****************************************************************************************\
* fast math *
\****************************************************************************************/
#if defined __BORLANDC__
# include <fastmath.h>
#elif defined __cplusplus
# include <cmath>
#else
# include <math.h>
#endif
#ifdef HAVE_TEGRA_OPTIMIZATION
# include "tegra_round.hpp"
#endif
//! @addtogroup core_utils
//! @{
#if CV_VFP
// 1. general scheme
#define ARM_ROUND(_value, _asm_string) \
int res; \
float temp; \
asm(_asm_string : [res] "=r" (res), [temp] "=w" (temp) : [value] "w" (_value)); \
return res
// 2. version for double
#ifdef __clang__
#define ARM_ROUND_DBL(value) ARM_ROUND(value, "vcvtr.s32.f64 %[temp], %[value] \n vmov %[res], %[temp]")
#else
#define ARM_ROUND_DBL(value) ARM_ROUND(value, "vcvtr.s32.f64 %[temp], %P[value] \n vmov %[res], %[temp]")
#endif
// 3. version for float
#define ARM_ROUND_FLT(value) ARM_ROUND(value, "vcvtr.s32.f32 %[temp], %[value]\n vmov %[res], %[temp]")
#endif // CV_VFP
/** @brief Rounds floating-point number to the nearest integer
@param value floating-point number. If the value is outside of INT_MIN ... INT_MAX range, the
result is not defined.
*/
CV_INLINE int
cvRound( double value )
{
#if ((defined _MSC_VER && defined _M_X64) || (defined __GNUC__ && defined __x86_64__ \
&& defined __SSE2__ && !defined __APPLE__)) && !defined(__CUDACC__)
__m128d t = _mm_set_sd( value );
return _mm_cvtsd_si32(t);
#elif defined _MSC_VER && defined _M_IX86
int t;
__asm
{
fld value;
fistp t;
}
return t;
#elif ((defined _MSC_VER && defined _M_ARM) || defined CV_ICC || \
defined __GNUC__) && defined HAVE_TEGRA_OPTIMIZATION
TEGRA_ROUND_DBL(value);
#elif defined CV_ICC || defined __GNUC__
# if CV_VFP
ARM_ROUND_DBL(value);
# else
return (int)lrint(value);
# endif
#else
/* it's ok if round does not comply with IEEE754 standard;
the tests should allow +/-1 difference when the tested functions use round */
return (int)(value + (value >= 0 ? 0.5 : -0.5));
#endif
}
/** @brief Rounds floating-point number to the nearest integer not larger than the original.
The function computes an integer i such that:
\f[i \le \texttt{value} < i+1\f]
@param value floating-point number. If the value is outside of INT_MIN ... INT_MAX range, the
result is not defined.
*/
CV_INLINE int cvFloor( double value )
{
#if (defined _MSC_VER && defined _M_X64 || (defined __GNUC__ && defined __SSE2__ && !defined __APPLE__)) && !defined(__CUDACC__)
__m128d t = _mm_set_sd( value );
int i = _mm_cvtsd_si32(t);
return i - _mm_movemask_pd(_mm_cmplt_sd(t, _mm_cvtsi32_sd(t,i)));
#elif defined __GNUC__
int i = (int)value;
return i - (i > value);
#else
int i = cvRound(value);
float diff = (float)(value - i);
return i - (diff < 0);
#endif
}
/** @brief Rounds floating-point number to the nearest integer not larger than the original.
The function computes an integer i such that:
\f[i \le \texttt{value} < i+1\f]
@param value floating-point number. If the value is outside of INT_MIN ... INT_MAX range, the
result is not defined.
*/
CV_INLINE int cvCeil( double value )
{
#if (defined _MSC_VER && defined _M_X64 || (defined __GNUC__ && defined __SSE2__&& !defined __APPLE__)) && !defined(__CUDACC__)
__m128d t = _mm_set_sd( value );
int i = _mm_cvtsd_si32(t);
return i + _mm_movemask_pd(_mm_cmplt_sd(_mm_cvtsi32_sd(t,i), t));
#elif defined __GNUC__
int i = (int)value;
return i + (i < value);
#else
int i = cvRound(value);
float diff = (float)(i - value);
return i + (diff < 0);
#endif
}
/** @brief Determines if the argument is Not A Number.
@param value The input floating-point value
The function returns 1 if the argument is Not A Number (as defined by IEEE754 standard), 0
otherwise. */
CV_INLINE int cvIsNaN( double value )
{
Cv64suf ieee754;
ieee754.f = value;
return ((unsigned)(ieee754.u >> 32) & 0x7fffffff) +
((unsigned)ieee754.u != 0) > 0x7ff00000;
}
/** @brief Determines if the argument is Infinity.
@param value The input floating-point value
The function returns 1 if the argument is a plus or minus infinity (as defined by IEEE754 standard)
and 0 otherwise. */
CV_INLINE int cvIsInf( double value )
{
Cv64suf ieee754;
ieee754.f = value;
return ((unsigned)(ieee754.u >> 32) & 0x7fffffff) == 0x7ff00000 &&
(unsigned)ieee754.u == 0;
}
#ifdef __cplusplus
/** @overload */
CV_INLINE int cvRound(float value)
{
#if ((defined _MSC_VER && defined _M_X64) || (defined __GNUC__ && defined __x86_64__ && \
defined __SSE2__ && !defined __APPLE__)) && !defined(__CUDACC__)
__m128 t = _mm_set_ss( value );
return _mm_cvtss_si32(t);
#elif defined _MSC_VER && defined _M_IX86
int t;
__asm
{
fld value;
fistp t;
}
return t;
#elif ((defined _MSC_VER && defined _M_ARM) || defined CV_ICC || \
defined __GNUC__) && defined HAVE_TEGRA_OPTIMIZATION
TEGRA_ROUND_FLT(value);
#elif defined CV_ICC || defined __GNUC__
# if CV_VFP
ARM_ROUND_FLT(value);
# else
return (int)lrintf(value);
# endif
#else
/* it's ok if round does not comply with IEEE754 standard;
the tests should allow +/-1 difference when the tested functions use round */
return (int)(value + (value >= 0 ? 0.5f : -0.5f));
#endif
}
/** @overload */
CV_INLINE int cvRound( int value )
{
return value;
}
/** @overload */
CV_INLINE int cvFloor( float value )
{
#if (defined _MSC_VER && defined _M_X64 || (defined __GNUC__ && defined __SSE2__ && !defined __APPLE__)) && !defined(__CUDACC__)
__m128 t = _mm_set_ss( value );
int i = _mm_cvtss_si32(t);
return i - _mm_movemask_ps(_mm_cmplt_ss(t, _mm_cvtsi32_ss(t,i)));
#elif defined __GNUC__
int i = (int)value;
return i - (i > value);
#else
int i = cvRound(value);
float diff = (float)(value - i);
return i - (diff < 0);
#endif
}
/** @overload */
CV_INLINE int cvFloor( int value )
{
return value;
}
/** @overload */
CV_INLINE int cvCeil( float value )
{
#if (defined _MSC_VER && defined _M_X64 || (defined __GNUC__ && defined __SSE2__&& !defined __APPLE__)) && !defined(__CUDACC__)
__m128 t = _mm_set_ss( value );
int i = _mm_cvtss_si32(t);
return i + _mm_movemask_ps(_mm_cmplt_ss(_mm_cvtsi32_ss(t,i), t));
#elif defined __GNUC__
int i = (int)value;
return i + (i < value);
#else
int i = cvRound(value);
float diff = (float)(i - value);
return i + (diff < 0);
#endif
}
/** @overload */
CV_INLINE int cvCeil( int value )
{
return value;
}
/** @overload */
CV_INLINE int cvIsNaN( float value )
{
Cv32suf ieee754;
ieee754.f = value;
return (ieee754.u & 0x7fffffff) > 0x7f800000;
}
/** @overload */
CV_INLINE int cvIsInf( float value )
{
Cv32suf ieee754;
ieee754.f = value;
return (ieee754.u & 0x7fffffff) == 0x7f800000;
}
#include <algorithm>
namespace cv
{
/////////////// saturate_cast (used in image & signal processing) ///////////////////
/**
Template function for accurate conversion from one primitive type to another.
The functions saturate_cast resemble the standard C++ cast operations, such as static_cast\<T\>()
and others. They perform an efficient and accurate conversion from one primitive type to another
(see the introduction chapter). saturate in the name means that when the input value v is out of the
range of the target type, the result is not formed just by taking low bits of the input, but instead
the value is clipped. For example:
@code
uchar a = saturate_cast<uchar>(-100); // a = 0 (UCHAR_MIN)
short b = saturate_cast<short>(33333.33333); // b = 32767 (SHRT_MAX)
@endcode
Such clipping is done when the target type is unsigned char , signed char , unsigned short or
signed short . For 32-bit integers, no clipping is done.
When the parameter is a floating-point value and the target type is an integer (8-, 16- or 32-bit),
the floating-point value is first rounded to the nearest integer and then clipped if needed (when
the target type is 8- or 16-bit).
This operation is used in the simplest or most complex image processing functions in OpenCV.
@param v Function parameter.
@sa add, subtract, multiply, divide, Mat::convertTo
*/
template<typename _Tp> static inline _Tp saturate_cast(uchar v) { return _Tp(v); }
/** @overload */
template<typename _Tp> static inline _Tp saturate_cast(schar v) { return _Tp(v); }
/** @overload */
template<typename _Tp> static inline _Tp saturate_cast(ushort v) { return _Tp(v); }
/** @overload */
template<typename _Tp> static inline _Tp saturate_cast(short v) { return _Tp(v); }
/** @overload */
template<typename _Tp> static inline _Tp saturate_cast(unsigned v) { return _Tp(v); }
/** @overload */
template<typename _Tp> static inline _Tp saturate_cast(int v) { return _Tp(v); }
/** @overload */
template<typename _Tp> static inline _Tp saturate_cast(float v) { return _Tp(v); }
/** @overload */
template<typename _Tp> static inline _Tp saturate_cast(double v) { return _Tp(v); }
/** @overload */
template<typename _Tp> static inline _Tp saturate_cast(int64 v) { return _Tp(v); }
/** @overload */
template<typename _Tp> static inline _Tp saturate_cast(uint64 v) { return _Tp(v); }
//! @cond IGNORED
template<> inline uchar saturate_cast<uchar>(schar v) { return (uchar)std::max((int)v, 0); }
template<> inline uchar saturate_cast<uchar>(ushort v) { return (uchar)std::min((unsigned)v, (unsigned)UCHAR_MAX); }
template<> inline uchar saturate_cast<uchar>(int v) { return (uchar)((unsigned)v <= UCHAR_MAX ? v : v > 0 ? UCHAR_MAX : 0); }
template<> inline uchar saturate_cast<uchar>(short v) { return saturate_cast<uchar>((int)v); }
template<> inline uchar saturate_cast<uchar>(unsigned v) { return (uchar)std::min(v, (unsigned)UCHAR_MAX); }
template<> inline uchar saturate_cast<uchar>(float v) { int iv = cvRound(v); return saturate_cast<uchar>(iv); }
template<> inline uchar saturate_cast<uchar>(double v) { int iv = cvRound(v); return saturate_cast<uchar>(iv); }
template<> inline uchar saturate_cast<uchar>(int64 v) { return (uchar)((uint64)v <= (uint64)UCHAR_MAX ? v : v > 0 ? UCHAR_MAX : 0); }
template<> inline uchar saturate_cast<uchar>(uint64 v) { return (uchar)std::min(v, (uint64)UCHAR_MAX); }
template<> inline schar saturate_cast<schar>(uchar v) { return (schar)std::min((int)v, SCHAR_MAX); }
template<> inline schar saturate_cast<schar>(ushort v) { return (schar)std::min((unsigned)v, (unsigned)SCHAR_MAX); }
template<> inline schar saturate_cast<schar>(int v) { return (schar)((unsigned)(v-SCHAR_MIN) <= (unsigned)UCHAR_MAX ? v : v > 0 ? SCHAR_MAX : SCHAR_MIN); }
template<> inline schar saturate_cast<schar>(short v) { return saturate_cast<schar>((int)v); }
template<> inline schar saturate_cast<schar>(unsigned v) { return (schar)std::min(v, (unsigned)SCHAR_MAX); }
template<> inline schar saturate_cast<schar>(float v) { int iv = cvRound(v); return saturate_cast<schar>(iv); }
template<> inline schar saturate_cast<schar>(double v) { int iv = cvRound(v); return saturate_cast<schar>(iv); }
template<> inline schar saturate_cast<schar>(int64 v) { return (schar)((uint64)((int64)v-SCHAR_MIN) <= (uint64)UCHAR_MAX ? v : v > 0 ? SCHAR_MAX : SCHAR_MIN); }
template<> inline schar saturate_cast<schar>(uint64 v) { return (schar)std::min(v, (uint64)SCHAR_MAX); }
template<> inline ushort saturate_cast<ushort>(schar v) { return (ushort)std::max((int)v, 0); }
template<> inline ushort saturate_cast<ushort>(short v) { return (ushort)std::max((int)v, 0); }
template<> inline ushort saturate_cast<ushort>(int v) { return (ushort)((unsigned)v <= (unsigned)USHRT_MAX ? v : v > 0 ? USHRT_MAX : 0); }
template<> inline ushort saturate_cast<ushort>(unsigned v) { return (ushort)std::min(v, (unsigned)USHRT_MAX); }
template<> inline ushort saturate_cast<ushort>(float v) { int iv = cvRound(v); return saturate_cast<ushort>(iv); }
template<> inline ushort saturate_cast<ushort>(double v) { int iv = cvRound(v); return saturate_cast<ushort>(iv); }
template<> inline ushort saturate_cast<ushort>(int64 v) { return (ushort)((uint64)v <= (uint64)USHRT_MAX ? v : v > 0 ? USHRT_MAX : 0); }
template<> inline ushort saturate_cast<ushort>(uint64 v) { return (ushort)std::min(v, (uint64)USHRT_MAX); }
template<> inline short saturate_cast<short>(ushort v) { return (short)std::min((int)v, SHRT_MAX); }
template<> inline short saturate_cast<short>(int v) { return (short)((unsigned)(v - SHRT_MIN) <= (unsigned)USHRT_MAX ? v : v > 0 ? SHRT_MAX : SHRT_MIN); }
template<> inline short saturate_cast<short>(unsigned v) { return (short)std::min(v, (unsigned)SHRT_MAX); }
template<> inline short saturate_cast<short>(float v) { int iv = cvRound(v); return saturate_cast<short>(iv); }
template<> inline short saturate_cast<short>(double v) { int iv = cvRound(v); return saturate_cast<short>(iv); }
template<> inline short saturate_cast<short>(int64 v) { return (short)((uint64)((int64)v - SHRT_MIN) <= (uint64)USHRT_MAX ? v : v > 0 ? SHRT_MAX : SHRT_MIN); }
template<> inline short saturate_cast<short>(uint64 v) { return (short)std::min(v, (uint64)SHRT_MAX); }
template<> inline int saturate_cast<int>(float v) { return cvRound(v); }
template<> inline int saturate_cast<int>(double v) { return cvRound(v); }
// we intentionally do not clip negative numbers, to make -1 become 0xffffffff etc.
template<> inline unsigned saturate_cast<unsigned>(float v) { return cvRound(v); }
template<> inline unsigned saturate_cast<unsigned>(double v) { return cvRound(v); }
//! @endcond
}
#endif // __cplusplus
//! @} core_utils
#endif //__OPENCV_HAL_H__