You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
622 lines
13 KiB
622 lines
13 KiB
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#ifndef __OPENCV_CORE_CUDAINL_HPP__
|
|
#define __OPENCV_CORE_CUDAINL_HPP__
|
|
|
|
#include "opencv2/core/cuda.hpp"
|
|
|
|
//! @cond IGNORED
|
|
|
|
namespace cv { namespace cuda {
|
|
|
|
//===================================================================================
|
|
// GpuMat
|
|
//===================================================================================
|
|
|
|
inline
|
|
GpuMat::GpuMat(Allocator* allocator_)
|
|
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
|
|
{}
|
|
|
|
inline
|
|
GpuMat::GpuMat(int rows_, int cols_, int type_, Allocator* allocator_)
|
|
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
|
|
{
|
|
if (rows_ > 0 && cols_ > 0)
|
|
create(rows_, cols_, type_);
|
|
}
|
|
|
|
inline
|
|
GpuMat::GpuMat(Size size_, int type_, Allocator* allocator_)
|
|
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
|
|
{
|
|
if (size_.height > 0 && size_.width > 0)
|
|
create(size_.height, size_.width, type_);
|
|
}
|
|
|
|
inline
|
|
GpuMat::GpuMat(int rows_, int cols_, int type_, Scalar s_, Allocator* allocator_)
|
|
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
|
|
{
|
|
if (rows_ > 0 && cols_ > 0)
|
|
{
|
|
create(rows_, cols_, type_);
|
|
setTo(s_);
|
|
}
|
|
}
|
|
|
|
inline
|
|
GpuMat::GpuMat(Size size_, int type_, Scalar s_, Allocator* allocator_)
|
|
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
|
|
{
|
|
if (size_.height > 0 && size_.width > 0)
|
|
{
|
|
create(size_.height, size_.width, type_);
|
|
setTo(s_);
|
|
}
|
|
}
|
|
|
|
inline
|
|
GpuMat::GpuMat(const GpuMat& m)
|
|
: flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend), allocator(m.allocator)
|
|
{
|
|
if (refcount)
|
|
CV_XADD(refcount, 1);
|
|
}
|
|
|
|
inline
|
|
GpuMat::GpuMat(InputArray arr, Allocator* allocator_) :
|
|
flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
|
|
{
|
|
upload(arr);
|
|
}
|
|
|
|
inline
|
|
GpuMat::~GpuMat()
|
|
{
|
|
release();
|
|
}
|
|
|
|
inline
|
|
GpuMat& GpuMat::operator =(const GpuMat& m)
|
|
{
|
|
if (this != &m)
|
|
{
|
|
GpuMat temp(m);
|
|
swap(temp);
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
inline
|
|
void GpuMat::create(Size size_, int type_)
|
|
{
|
|
create(size_.height, size_.width, type_);
|
|
}
|
|
|
|
inline
|
|
void GpuMat::swap(GpuMat& b)
|
|
{
|
|
std::swap(flags, b.flags);
|
|
std::swap(rows, b.rows);
|
|
std::swap(cols, b.cols);
|
|
std::swap(step, b.step);
|
|
std::swap(data, b.data);
|
|
std::swap(datastart, b.datastart);
|
|
std::swap(dataend, b.dataend);
|
|
std::swap(refcount, b.refcount);
|
|
std::swap(allocator, b.allocator);
|
|
}
|
|
|
|
inline
|
|
GpuMat GpuMat::clone() const
|
|
{
|
|
GpuMat m;
|
|
copyTo(m);
|
|
return m;
|
|
}
|
|
|
|
inline
|
|
void GpuMat::copyTo(OutputArray dst, InputArray mask) const
|
|
{
|
|
copyTo(dst, mask, Stream::Null());
|
|
}
|
|
|
|
inline
|
|
GpuMat& GpuMat::setTo(Scalar s)
|
|
{
|
|
return setTo(s, Stream::Null());
|
|
}
|
|
|
|
inline
|
|
GpuMat& GpuMat::setTo(Scalar s, InputArray mask)
|
|
{
|
|
return setTo(s, mask, Stream::Null());
|
|
}
|
|
|
|
inline
|
|
void GpuMat::convertTo(OutputArray dst, int rtype) const
|
|
{
|
|
convertTo(dst, rtype, Stream::Null());
|
|
}
|
|
|
|
inline
|
|
void GpuMat::convertTo(OutputArray dst, int rtype, double alpha, double beta) const
|
|
{
|
|
convertTo(dst, rtype, alpha, beta, Stream::Null());
|
|
}
|
|
|
|
inline
|
|
void GpuMat::convertTo(OutputArray dst, int rtype, double alpha, Stream& stream) const
|
|
{
|
|
convertTo(dst, rtype, alpha, 0.0, stream);
|
|
}
|
|
|
|
inline
|
|
void GpuMat::assignTo(GpuMat& m, int _type) const
|
|
{
|
|
if (_type < 0)
|
|
m = *this;
|
|
else
|
|
convertTo(m, _type);
|
|
}
|
|
|
|
inline
|
|
uchar* GpuMat::ptr(int y)
|
|
{
|
|
CV_DbgAssert( (unsigned)y < (unsigned)rows );
|
|
return data + step * y;
|
|
}
|
|
|
|
inline
|
|
const uchar* GpuMat::ptr(int y) const
|
|
{
|
|
CV_DbgAssert( (unsigned)y < (unsigned)rows );
|
|
return data + step * y;
|
|
}
|
|
|
|
template<typename _Tp> inline
|
|
_Tp* GpuMat::ptr(int y)
|
|
{
|
|
return (_Tp*)ptr(y);
|
|
}
|
|
|
|
template<typename _Tp> inline
|
|
const _Tp* GpuMat::ptr(int y) const
|
|
{
|
|
return (const _Tp*)ptr(y);
|
|
}
|
|
|
|
template <class T> inline
|
|
GpuMat::operator PtrStepSz<T>() const
|
|
{
|
|
return PtrStepSz<T>(rows, cols, (T*)data, step);
|
|
}
|
|
|
|
template <class T> inline
|
|
GpuMat::operator PtrStep<T>() const
|
|
{
|
|
return PtrStep<T>((T*)data, step);
|
|
}
|
|
|
|
inline
|
|
GpuMat GpuMat::row(int y) const
|
|
{
|
|
return GpuMat(*this, Range(y, y+1), Range::all());
|
|
}
|
|
|
|
inline
|
|
GpuMat GpuMat::col(int x) const
|
|
{
|
|
return GpuMat(*this, Range::all(), Range(x, x+1));
|
|
}
|
|
|
|
inline
|
|
GpuMat GpuMat::rowRange(int startrow, int endrow) const
|
|
{
|
|
return GpuMat(*this, Range(startrow, endrow), Range::all());
|
|
}
|
|
|
|
inline
|
|
GpuMat GpuMat::rowRange(Range r) const
|
|
{
|
|
return GpuMat(*this, r, Range::all());
|
|
}
|
|
|
|
inline
|
|
GpuMat GpuMat::colRange(int startcol, int endcol) const
|
|
{
|
|
return GpuMat(*this, Range::all(), Range(startcol, endcol));
|
|
}
|
|
|
|
inline
|
|
GpuMat GpuMat::colRange(Range r) const
|
|
{
|
|
return GpuMat(*this, Range::all(), r);
|
|
}
|
|
|
|
inline
|
|
GpuMat GpuMat::operator ()(Range rowRange_, Range colRange_) const
|
|
{
|
|
return GpuMat(*this, rowRange_, colRange_);
|
|
}
|
|
|
|
inline
|
|
GpuMat GpuMat::operator ()(Rect roi) const
|
|
{
|
|
return GpuMat(*this, roi);
|
|
}
|
|
|
|
inline
|
|
bool GpuMat::isContinuous() const
|
|
{
|
|
return (flags & Mat::CONTINUOUS_FLAG) != 0;
|
|
}
|
|
|
|
inline
|
|
size_t GpuMat::elemSize() const
|
|
{
|
|
return CV_ELEM_SIZE(flags);
|
|
}
|
|
|
|
inline
|
|
size_t GpuMat::elemSize1() const
|
|
{
|
|
return CV_ELEM_SIZE1(flags);
|
|
}
|
|
|
|
inline
|
|
int GpuMat::type() const
|
|
{
|
|
return CV_MAT_TYPE(flags);
|
|
}
|
|
|
|
inline
|
|
int GpuMat::depth() const
|
|
{
|
|
return CV_MAT_DEPTH(flags);
|
|
}
|
|
|
|
inline
|
|
int GpuMat::channels() const
|
|
{
|
|
return CV_MAT_CN(flags);
|
|
}
|
|
|
|
inline
|
|
size_t GpuMat::step1() const
|
|
{
|
|
return step / elemSize1();
|
|
}
|
|
|
|
inline
|
|
Size GpuMat::size() const
|
|
{
|
|
return Size(cols, rows);
|
|
}
|
|
|
|
inline
|
|
bool GpuMat::empty() const
|
|
{
|
|
return data == 0;
|
|
}
|
|
|
|
static inline
|
|
GpuMat createContinuous(int rows, int cols, int type)
|
|
{
|
|
GpuMat m;
|
|
createContinuous(rows, cols, type, m);
|
|
return m;
|
|
}
|
|
|
|
static inline
|
|
void createContinuous(Size size, int type, OutputArray arr)
|
|
{
|
|
createContinuous(size.height, size.width, type, arr);
|
|
}
|
|
|
|
static inline
|
|
GpuMat createContinuous(Size size, int type)
|
|
{
|
|
GpuMat m;
|
|
createContinuous(size, type, m);
|
|
return m;
|
|
}
|
|
|
|
static inline
|
|
void ensureSizeIsEnough(Size size, int type, OutputArray arr)
|
|
{
|
|
ensureSizeIsEnough(size.height, size.width, type, arr);
|
|
}
|
|
|
|
static inline
|
|
void swap(GpuMat& a, GpuMat& b)
|
|
{
|
|
a.swap(b);
|
|
}
|
|
|
|
//===================================================================================
|
|
// HostMem
|
|
//===================================================================================
|
|
|
|
inline
|
|
HostMem::HostMem(AllocType alloc_type_)
|
|
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_)
|
|
{
|
|
}
|
|
|
|
inline
|
|
HostMem::HostMem(const HostMem& m)
|
|
: flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend), alloc_type(m.alloc_type)
|
|
{
|
|
if( refcount )
|
|
CV_XADD(refcount, 1);
|
|
}
|
|
|
|
inline
|
|
HostMem::HostMem(int rows_, int cols_, int type_, AllocType alloc_type_)
|
|
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_)
|
|
{
|
|
if (rows_ > 0 && cols_ > 0)
|
|
create(rows_, cols_, type_);
|
|
}
|
|
|
|
inline
|
|
HostMem::HostMem(Size size_, int type_, AllocType alloc_type_)
|
|
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_)
|
|
{
|
|
if (size_.height > 0 && size_.width > 0)
|
|
create(size_.height, size_.width, type_);
|
|
}
|
|
|
|
inline
|
|
HostMem::HostMem(InputArray arr, AllocType alloc_type_)
|
|
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_)
|
|
{
|
|
arr.getMat().copyTo(*this);
|
|
}
|
|
|
|
inline
|
|
HostMem::~HostMem()
|
|
{
|
|
release();
|
|
}
|
|
|
|
inline
|
|
HostMem& HostMem::operator =(const HostMem& m)
|
|
{
|
|
if (this != &m)
|
|
{
|
|
HostMem temp(m);
|
|
swap(temp);
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
inline
|
|
void HostMem::swap(HostMem& b)
|
|
{
|
|
std::swap(flags, b.flags);
|
|
std::swap(rows, b.rows);
|
|
std::swap(cols, b.cols);
|
|
std::swap(step, b.step);
|
|
std::swap(data, b.data);
|
|
std::swap(datastart, b.datastart);
|
|
std::swap(dataend, b.dataend);
|
|
std::swap(refcount, b.refcount);
|
|
std::swap(alloc_type, b.alloc_type);
|
|
}
|
|
|
|
inline
|
|
HostMem HostMem::clone() const
|
|
{
|
|
HostMem m(size(), type(), alloc_type);
|
|
createMatHeader().copyTo(m);
|
|
return m;
|
|
}
|
|
|
|
inline
|
|
void HostMem::create(Size size_, int type_)
|
|
{
|
|
create(size_.height, size_.width, type_);
|
|
}
|
|
|
|
inline
|
|
Mat HostMem::createMatHeader() const
|
|
{
|
|
return Mat(size(), type(), data, step);
|
|
}
|
|
|
|
inline
|
|
bool HostMem::isContinuous() const
|
|
{
|
|
return (flags & Mat::CONTINUOUS_FLAG) != 0;
|
|
}
|
|
|
|
inline
|
|
size_t HostMem::elemSize() const
|
|
{
|
|
return CV_ELEM_SIZE(flags);
|
|
}
|
|
|
|
inline
|
|
size_t HostMem::elemSize1() const
|
|
{
|
|
return CV_ELEM_SIZE1(flags);
|
|
}
|
|
|
|
inline
|
|
int HostMem::type() const
|
|
{
|
|
return CV_MAT_TYPE(flags);
|
|
}
|
|
|
|
inline
|
|
int HostMem::depth() const
|
|
{
|
|
return CV_MAT_DEPTH(flags);
|
|
}
|
|
|
|
inline
|
|
int HostMem::channels() const
|
|
{
|
|
return CV_MAT_CN(flags);
|
|
}
|
|
|
|
inline
|
|
size_t HostMem::step1() const
|
|
{
|
|
return step / elemSize1();
|
|
}
|
|
|
|
inline
|
|
Size HostMem::size() const
|
|
{
|
|
return Size(cols, rows);
|
|
}
|
|
|
|
inline
|
|
bool HostMem::empty() const
|
|
{
|
|
return data == 0;
|
|
}
|
|
|
|
static inline
|
|
void swap(HostMem& a, HostMem& b)
|
|
{
|
|
a.swap(b);
|
|
}
|
|
|
|
//===================================================================================
|
|
// Stream
|
|
//===================================================================================
|
|
|
|
inline
|
|
Stream::Stream(const Ptr<Impl>& impl)
|
|
: impl_(impl)
|
|
{
|
|
}
|
|
|
|
//===================================================================================
|
|
// Initialization & Info
|
|
//===================================================================================
|
|
|
|
inline
|
|
bool TargetArchs::has(int major, int minor)
|
|
{
|
|
return hasPtx(major, minor) || hasBin(major, minor);
|
|
}
|
|
|
|
inline
|
|
bool TargetArchs::hasEqualOrGreater(int major, int minor)
|
|
{
|
|
return hasEqualOrGreaterPtx(major, minor) || hasEqualOrGreaterBin(major, minor);
|
|
}
|
|
|
|
inline
|
|
DeviceInfo::DeviceInfo()
|
|
{
|
|
device_id_ = getDevice();
|
|
}
|
|
|
|
inline
|
|
DeviceInfo::DeviceInfo(int device_id)
|
|
{
|
|
CV_Assert( device_id >= 0 && device_id < getCudaEnabledDeviceCount() );
|
|
device_id_ = device_id;
|
|
}
|
|
|
|
inline
|
|
int DeviceInfo::deviceID() const
|
|
{
|
|
return device_id_;
|
|
}
|
|
|
|
inline
|
|
size_t DeviceInfo::freeMemory() const
|
|
{
|
|
size_t _totalMemory, _freeMemory;
|
|
queryMemory(_totalMemory, _freeMemory);
|
|
return _freeMemory;
|
|
}
|
|
|
|
inline
|
|
size_t DeviceInfo::totalMemory() const
|
|
{
|
|
size_t _totalMemory, _freeMemory;
|
|
queryMemory(_totalMemory, _freeMemory);
|
|
return _totalMemory;
|
|
}
|
|
|
|
inline
|
|
bool DeviceInfo::supports(FeatureSet feature_set) const
|
|
{
|
|
int version = majorVersion() * 10 + minorVersion();
|
|
return version >= feature_set;
|
|
}
|
|
|
|
|
|
}} // namespace cv { namespace cuda {
|
|
|
|
//===================================================================================
|
|
// Mat
|
|
//===================================================================================
|
|
|
|
namespace cv {
|
|
|
|
inline
|
|
Mat::Mat(const cuda::GpuMat& m)
|
|
: flags(0), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), datalimit(0), allocator(0), u(0), size(&rows)
|
|
{
|
|
m.download(*this);
|
|
}
|
|
|
|
}
|
|
|
|
//! @endcond
|
|
|
|
#endif // __OPENCV_CORE_CUDAINL_HPP__
|