/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Copyright (C) 2015, Itseez Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_DEF_H__ #define __OPENCV_DEF_H__ #if !defined _CRT_SECURE_NO_DEPRECATE && defined _MSC_VER && _MSC_VER > 1300 # define _CRT_SECURE_NO_DEPRECATE /* to avoid multiple Visual Studio warnings */ #endif #include #if defined __ICL # define CV_ICC __ICL #elif defined __ICC # define CV_ICC __ICC #elif defined __ECL # define CV_ICC __ECL #elif defined __ECC # define CV_ICC __ECC #elif defined __INTEL_COMPILER # define CV_ICC __INTEL_COMPILER #endif #ifndef CV_INLINE # if defined __cplusplus # define CV_INLINE static inline # elif defined _MSC_VER # define CV_INLINE __inline # else # define CV_INLINE static # endif #endif #if defined CV_ICC && !defined CV_ENABLE_UNROLLED # define CV_ENABLE_UNROLLED 0 #else # define CV_ENABLE_UNROLLED 1 #endif #ifdef __GNUC__ # define CV_DECL_ALIGNED(x) __attribute__ ((aligned (x))) #elif defined _MSC_VER # define CV_DECL_ALIGNED(x) __declspec(align(x)) #else # define CV_DECL_ALIGNED(x) #endif /* CPU features and intrinsics support */ #define CV_CPU_NONE 0 #define CV_CPU_MMX 1 #define CV_CPU_SSE 2 #define CV_CPU_SSE2 3 #define CV_CPU_SSE3 4 #define CV_CPU_SSSE3 5 #define CV_CPU_SSE4_1 6 #define CV_CPU_SSE4_2 7 #define CV_CPU_POPCNT 8 #define CV_CPU_AVX 10 #define CV_CPU_AVX2 11 #define CV_CPU_FMA3 12 #define CV_CPU_AVX_512F 13 #define CV_CPU_AVX_512BW 14 #define CV_CPU_AVX_512CD 15 #define CV_CPU_AVX_512DQ 16 #define CV_CPU_AVX_512ER 17 #define CV_CPU_AVX_512IFMA512 18 #define CV_CPU_AVX_512PF 19 #define CV_CPU_AVX_512VBMI 20 #define CV_CPU_AVX_512VL 21 #define CV_CPU_NEON 100 // when adding to this list remember to update the enum in core/utility.cpp #define CV_HARDWARE_MAX_FEATURE 255 // do not include SSE/AVX/NEON headers for NVCC compiler #ifndef __CUDACC__ #if defined __SSE2__ || defined _M_X64 || (defined _M_IX86_FP && _M_IX86_FP >= 2) # include # define CV_MMX 1 # define CV_SSE 1 # define CV_SSE2 1 # if defined __SSE3__ || (defined _MSC_VER && _MSC_VER >= 1500) # include # define CV_SSE3 1 # endif # if defined __SSSE3__ || (defined _MSC_VER && _MSC_VER >= 1500) # include # define CV_SSSE3 1 # endif # if defined __SSE4_1__ || (defined _MSC_VER && _MSC_VER >= 1500) # include # define CV_SSE4_1 1 # endif # if defined __SSE4_2__ || (defined _MSC_VER && _MSC_VER >= 1500) # include # define CV_SSE4_2 1 # endif # if defined __POPCNT__ || (defined _MSC_VER && _MSC_VER >= 1500) # ifdef _MSC_VER # include # else # include # endif # define CV_POPCNT 1 # endif # if defined __AVX__ || (defined _MSC_VER && _MSC_VER >= 1600 && 0) // MS Visual Studio 2010 (2012?) has no macro pre-defined to identify the use of /arch:AVX // See: http://connect.microsoft.com/VisualStudio/feedback/details/605858/arch-avx-should-define-a-predefined-macro-in-x64-and-set-a-unique-value-for-m-ix86-fp-in-win32 # include # define CV_AVX 1 # if defined(_XCR_XFEATURE_ENABLED_MASK) # define __xgetbv() _xgetbv(_XCR_XFEATURE_ENABLED_MASK) # else # define __xgetbv() 0 # endif # endif # if defined __AVX2__ || (defined _MSC_VER && _MSC_VER >= 1800 && 0) # include # define CV_AVX2 1 # if defined __FMA__ # define CV_FMA3 1 # endif # endif #endif #if (defined WIN32 || defined _WIN32) && defined(_M_ARM) # include # include "arm_neon.h" # define CV_NEON 1 # define CPU_HAS_NEON_FEATURE (true) #elif defined(__ARM_NEON__) || (defined (__ARM_NEON) && defined(__aarch64__)) # include # define CV_NEON 1 #endif #if defined __GNUC__ && defined __arm__ && (defined __ARM_PCS_VFP || defined __ARM_VFPV3__) # define CV_VFP 1 #endif #endif // __CUDACC__ #ifndef CV_POPCNT #define CV_POPCNT 0 #endif #ifndef CV_MMX # define CV_MMX 0 #endif #ifndef CV_SSE # define CV_SSE 0 #endif #ifndef CV_SSE2 # define CV_SSE2 0 #endif #ifndef CV_SSE3 # define CV_SSE3 0 #endif #ifndef CV_SSSE3 # define CV_SSSE3 0 #endif #ifndef CV_SSE4_1 # define CV_SSE4_1 0 #endif #ifndef CV_SSE4_2 # define CV_SSE4_2 0 #endif #ifndef CV_AVX # define CV_AVX 0 #endif #ifndef CV_AVX2 # define CV_AVX2 0 #endif #ifndef CV_FMA3 # define CV_FMA3 0 #endif #ifndef CV_AVX_512F # define CV_AVX_512F 0 #endif #ifndef CV_AVX_512BW # define CV_AVX_512BW 0 #endif #ifndef CV_AVX_512CD # define CV_AVX_512CD 0 #endif #ifndef CV_AVX_512DQ # define CV_AVX_512DQ 0 #endif #ifndef CV_AVX_512ER # define CV_AVX_512ER 0 #endif #ifndef CV_AVX_512IFMA512 # define CV_AVX_512IFMA512 0 #endif #ifndef CV_AVX_512PF # define CV_AVX_512PF 0 #endif #ifndef CV_AVX_512VBMI # define CV_AVX_512VBMI 0 #endif #ifndef CV_AVX_512VL # define CV_AVX_512VL 0 #endif #ifndef CV_NEON # define CV_NEON 0 #endif #ifndef CV_VFP # define CV_VFP 0 #endif /* primitive types */ /* schar - signed 1 byte integer uchar - unsigned 1 byte integer short - signed 2 byte integer ushort - unsigned 2 byte integer int - signed 4 byte integer uint - unsigned 4 byte integer int64 - signed 8 byte integer uint64 - unsigned 8 byte integer */ #if !defined _MSC_VER && !defined __BORLANDC__ # if defined __cplusplus && __cplusplus >= 201103L # include typedef std::uint32_t uint; # else # include typedef uint32_t uint; # endif #else typedef unsigned uint; #endif typedef signed char schar; #ifndef __IPL_H__ typedef unsigned char uchar; typedef unsigned short ushort; #endif #if defined _MSC_VER || defined __BORLANDC__ typedef __int64 int64; typedef unsigned __int64 uint64; # define CV_BIG_INT(n) n##I64 # define CV_BIG_UINT(n) n##UI64 #else typedef int64_t int64; typedef uint64_t uint64; # define CV_BIG_INT(n) n##LL # define CV_BIG_UINT(n) n##ULL #endif /* fundamental constants */ #define CV_PI 3.1415926535897932384626433832795 #define CV_2PI 6.283185307179586476925286766559 #define CV_LOG2 0.69314718055994530941723212145818 typedef union Cv32suf { int i; unsigned u; float f; } Cv32suf; typedef union Cv64suf { int64 i; uint64 u; double f; } Cv64suf; /****************************************************************************************\ * fast math * \****************************************************************************************/ #if defined __BORLANDC__ # include #elif defined __cplusplus # include #else # include #endif #ifdef HAVE_TEGRA_OPTIMIZATION # include "tegra_round.hpp" #endif //! @addtogroup core_utils //! @{ #if CV_VFP // 1. general scheme #define ARM_ROUND(_value, _asm_string) \ int res; \ float temp; \ asm(_asm_string : [res] "=r" (res), [temp] "=w" (temp) : [value] "w" (_value)); \ return res // 2. version for double #ifdef __clang__ #define ARM_ROUND_DBL(value) ARM_ROUND(value, "vcvtr.s32.f64 %[temp], %[value] \n vmov %[res], %[temp]") #else #define ARM_ROUND_DBL(value) ARM_ROUND(value, "vcvtr.s32.f64 %[temp], %P[value] \n vmov %[res], %[temp]") #endif // 3. version for float #define ARM_ROUND_FLT(value) ARM_ROUND(value, "vcvtr.s32.f32 %[temp], %[value]\n vmov %[res], %[temp]") #endif // CV_VFP /** @brief Rounds floating-point number to the nearest integer @param value floating-point number. If the value is outside of INT_MIN ... INT_MAX range, the result is not defined. */ CV_INLINE int cvRound( double value ) { #if ((defined _MSC_VER && defined _M_X64) || (defined __GNUC__ && defined __x86_64__ \ && defined __SSE2__ && !defined __APPLE__)) && !defined(__CUDACC__) __m128d t = _mm_set_sd( value ); return _mm_cvtsd_si32(t); #elif defined _MSC_VER && defined _M_IX86 int t; __asm { fld value; fistp t; } return t; #elif ((defined _MSC_VER && defined _M_ARM) || defined CV_ICC || \ defined __GNUC__) && defined HAVE_TEGRA_OPTIMIZATION TEGRA_ROUND_DBL(value); #elif defined CV_ICC || defined __GNUC__ # if CV_VFP ARM_ROUND_DBL(value); # else return (int)lrint(value); # endif #else /* it's ok if round does not comply with IEEE754 standard; the tests should allow +/-1 difference when the tested functions use round */ return (int)(value + (value >= 0 ? 0.5 : -0.5)); #endif } /** @brief Rounds floating-point number to the nearest integer not larger than the original. The function computes an integer i such that: \f[i \le \texttt{value} < i+1\f] @param value floating-point number. If the value is outside of INT_MIN ... INT_MAX range, the result is not defined. */ CV_INLINE int cvFloor( double value ) { #if (defined _MSC_VER && defined _M_X64 || (defined __GNUC__ && defined __SSE2__ && !defined __APPLE__)) && !defined(__CUDACC__) __m128d t = _mm_set_sd( value ); int i = _mm_cvtsd_si32(t); return i - _mm_movemask_pd(_mm_cmplt_sd(t, _mm_cvtsi32_sd(t,i))); #elif defined __GNUC__ int i = (int)value; return i - (i > value); #else int i = cvRound(value); float diff = (float)(value - i); return i - (diff < 0); #endif } /** @brief Rounds floating-point number to the nearest integer not larger than the original. The function computes an integer i such that: \f[i \le \texttt{value} < i+1\f] @param value floating-point number. If the value is outside of INT_MIN ... INT_MAX range, the result is not defined. */ CV_INLINE int cvCeil( double value ) { #if (defined _MSC_VER && defined _M_X64 || (defined __GNUC__ && defined __SSE2__&& !defined __APPLE__)) && !defined(__CUDACC__) __m128d t = _mm_set_sd( value ); int i = _mm_cvtsd_si32(t); return i + _mm_movemask_pd(_mm_cmplt_sd(_mm_cvtsi32_sd(t,i), t)); #elif defined __GNUC__ int i = (int)value; return i + (i < value); #else int i = cvRound(value); float diff = (float)(i - value); return i + (diff < 0); #endif } /** @brief Determines if the argument is Not A Number. @param value The input floating-point value The function returns 1 if the argument is Not A Number (as defined by IEEE754 standard), 0 otherwise. */ CV_INLINE int cvIsNaN( double value ) { Cv64suf ieee754; ieee754.f = value; return ((unsigned)(ieee754.u >> 32) & 0x7fffffff) + ((unsigned)ieee754.u != 0) > 0x7ff00000; } /** @brief Determines if the argument is Infinity. @param value The input floating-point value The function returns 1 if the argument is a plus or minus infinity (as defined by IEEE754 standard) and 0 otherwise. */ CV_INLINE int cvIsInf( double value ) { Cv64suf ieee754; ieee754.f = value; return ((unsigned)(ieee754.u >> 32) & 0x7fffffff) == 0x7ff00000 && (unsigned)ieee754.u == 0; } #ifdef __cplusplus /** @overload */ CV_INLINE int cvRound(float value) { #if ((defined _MSC_VER && defined _M_X64) || (defined __GNUC__ && defined __x86_64__ && \ defined __SSE2__ && !defined __APPLE__)) && !defined(__CUDACC__) __m128 t = _mm_set_ss( value ); return _mm_cvtss_si32(t); #elif defined _MSC_VER && defined _M_IX86 int t; __asm { fld value; fistp t; } return t; #elif ((defined _MSC_VER && defined _M_ARM) || defined CV_ICC || \ defined __GNUC__) && defined HAVE_TEGRA_OPTIMIZATION TEGRA_ROUND_FLT(value); #elif defined CV_ICC || defined __GNUC__ # if CV_VFP ARM_ROUND_FLT(value); # else return (int)lrintf(value); # endif #else /* it's ok if round does not comply with IEEE754 standard; the tests should allow +/-1 difference when the tested functions use round */ return (int)(value + (value >= 0 ? 0.5f : -0.5f)); #endif } /** @overload */ CV_INLINE int cvRound( int value ) { return value; } /** @overload */ CV_INLINE int cvFloor( float value ) { #if (defined _MSC_VER && defined _M_X64 || (defined __GNUC__ && defined __SSE2__ && !defined __APPLE__)) && !defined(__CUDACC__) __m128 t = _mm_set_ss( value ); int i = _mm_cvtss_si32(t); return i - _mm_movemask_ps(_mm_cmplt_ss(t, _mm_cvtsi32_ss(t,i))); #elif defined __GNUC__ int i = (int)value; return i - (i > value); #else int i = cvRound(value); float diff = (float)(value - i); return i - (diff < 0); #endif } /** @overload */ CV_INLINE int cvFloor( int value ) { return value; } /** @overload */ CV_INLINE int cvCeil( float value ) { #if (defined _MSC_VER && defined _M_X64 || (defined __GNUC__ && defined __SSE2__&& !defined __APPLE__)) && !defined(__CUDACC__) __m128 t = _mm_set_ss( value ); int i = _mm_cvtss_si32(t); return i + _mm_movemask_ps(_mm_cmplt_ss(_mm_cvtsi32_ss(t,i), t)); #elif defined __GNUC__ int i = (int)value; return i + (i < value); #else int i = cvRound(value); float diff = (float)(i - value); return i + (diff < 0); #endif } /** @overload */ CV_INLINE int cvCeil( int value ) { return value; } /** @overload */ CV_INLINE int cvIsNaN( float value ) { Cv32suf ieee754; ieee754.f = value; return (ieee754.u & 0x7fffffff) > 0x7f800000; } /** @overload */ CV_INLINE int cvIsInf( float value ) { Cv32suf ieee754; ieee754.f = value; return (ieee754.u & 0x7fffffff) == 0x7f800000; } #include namespace cv { /////////////// saturate_cast (used in image & signal processing) /////////////////// /** Template function for accurate conversion from one primitive type to another. The functions saturate_cast resemble the standard C++ cast operations, such as static_cast\() and others. They perform an efficient and accurate conversion from one primitive type to another (see the introduction chapter). saturate in the name means that when the input value v is out of the range of the target type, the result is not formed just by taking low bits of the input, but instead the value is clipped. For example: @code uchar a = saturate_cast(-100); // a = 0 (UCHAR_MIN) short b = saturate_cast(33333.33333); // b = 32767 (SHRT_MAX) @endcode Such clipping is done when the target type is unsigned char , signed char , unsigned short or signed short . For 32-bit integers, no clipping is done. When the parameter is a floating-point value and the target type is an integer (8-, 16- or 32-bit), the floating-point value is first rounded to the nearest integer and then clipped if needed (when the target type is 8- or 16-bit). This operation is used in the simplest or most complex image processing functions in OpenCV. @param v Function parameter. @sa add, subtract, multiply, divide, Mat::convertTo */ template static inline _Tp saturate_cast(uchar v) { return _Tp(v); } /** @overload */ template static inline _Tp saturate_cast(schar v) { return _Tp(v); } /** @overload */ template static inline _Tp saturate_cast(ushort v) { return _Tp(v); } /** @overload */ template static inline _Tp saturate_cast(short v) { return _Tp(v); } /** @overload */ template static inline _Tp saturate_cast(unsigned v) { return _Tp(v); } /** @overload */ template static inline _Tp saturate_cast(int v) { return _Tp(v); } /** @overload */ template static inline _Tp saturate_cast(float v) { return _Tp(v); } /** @overload */ template static inline _Tp saturate_cast(double v) { return _Tp(v); } /** @overload */ template static inline _Tp saturate_cast(int64 v) { return _Tp(v); } /** @overload */ template static inline _Tp saturate_cast(uint64 v) { return _Tp(v); } //! @cond IGNORED template<> inline uchar saturate_cast(schar v) { return (uchar)std::max((int)v, 0); } template<> inline uchar saturate_cast(ushort v) { return (uchar)std::min((unsigned)v, (unsigned)UCHAR_MAX); } template<> inline uchar saturate_cast(int v) { return (uchar)((unsigned)v <= UCHAR_MAX ? v : v > 0 ? UCHAR_MAX : 0); } template<> inline uchar saturate_cast(short v) { return saturate_cast((int)v); } template<> inline uchar saturate_cast(unsigned v) { return (uchar)std::min(v, (unsigned)UCHAR_MAX); } template<> inline uchar saturate_cast(float v) { int iv = cvRound(v); return saturate_cast(iv); } template<> inline uchar saturate_cast(double v) { int iv = cvRound(v); return saturate_cast(iv); } template<> inline uchar saturate_cast(int64 v) { return (uchar)((uint64)v <= (uint64)UCHAR_MAX ? v : v > 0 ? UCHAR_MAX : 0); } template<> inline uchar saturate_cast(uint64 v) { return (uchar)std::min(v, (uint64)UCHAR_MAX); } template<> inline schar saturate_cast(uchar v) { return (schar)std::min((int)v, SCHAR_MAX); } template<> inline schar saturate_cast(ushort v) { return (schar)std::min((unsigned)v, (unsigned)SCHAR_MAX); } template<> inline schar saturate_cast(int v) { return (schar)((unsigned)(v-SCHAR_MIN) <= (unsigned)UCHAR_MAX ? v : v > 0 ? SCHAR_MAX : SCHAR_MIN); } template<> inline schar saturate_cast(short v) { return saturate_cast((int)v); } template<> inline schar saturate_cast(unsigned v) { return (schar)std::min(v, (unsigned)SCHAR_MAX); } template<> inline schar saturate_cast(float v) { int iv = cvRound(v); return saturate_cast(iv); } template<> inline schar saturate_cast(double v) { int iv = cvRound(v); return saturate_cast(iv); } template<> inline schar saturate_cast(int64 v) { return (schar)((uint64)((int64)v-SCHAR_MIN) <= (uint64)UCHAR_MAX ? v : v > 0 ? SCHAR_MAX : SCHAR_MIN); } template<> inline schar saturate_cast(uint64 v) { return (schar)std::min(v, (uint64)SCHAR_MAX); } template<> inline ushort saturate_cast(schar v) { return (ushort)std::max((int)v, 0); } template<> inline ushort saturate_cast(short v) { return (ushort)std::max((int)v, 0); } template<> inline ushort saturate_cast(int v) { return (ushort)((unsigned)v <= (unsigned)USHRT_MAX ? v : v > 0 ? USHRT_MAX : 0); } template<> inline ushort saturate_cast(unsigned v) { return (ushort)std::min(v, (unsigned)USHRT_MAX); } template<> inline ushort saturate_cast(float v) { int iv = cvRound(v); return saturate_cast(iv); } template<> inline ushort saturate_cast(double v) { int iv = cvRound(v); return saturate_cast(iv); } template<> inline ushort saturate_cast(int64 v) { return (ushort)((uint64)v <= (uint64)USHRT_MAX ? v : v > 0 ? USHRT_MAX : 0); } template<> inline ushort saturate_cast(uint64 v) { return (ushort)std::min(v, (uint64)USHRT_MAX); } template<> inline short saturate_cast(ushort v) { return (short)std::min((int)v, SHRT_MAX); } template<> inline short saturate_cast(int v) { return (short)((unsigned)(v - SHRT_MIN) <= (unsigned)USHRT_MAX ? v : v > 0 ? SHRT_MAX : SHRT_MIN); } template<> inline short saturate_cast(unsigned v) { return (short)std::min(v, (unsigned)SHRT_MAX); } template<> inline short saturate_cast(float v) { int iv = cvRound(v); return saturate_cast(iv); } template<> inline short saturate_cast(double v) { int iv = cvRound(v); return saturate_cast(iv); } template<> inline short saturate_cast(int64 v) { return (short)((uint64)((int64)v - SHRT_MIN) <= (uint64)USHRT_MAX ? v : v > 0 ? SHRT_MAX : SHRT_MIN); } template<> inline short saturate_cast(uint64 v) { return (short)std::min(v, (uint64)SHRT_MAX); } template<> inline int saturate_cast(float v) { return cvRound(v); } template<> inline int saturate_cast(double v) { return cvRound(v); } // we intentionally do not clip negative numbers, to make -1 become 0xffffffff etc. template<> inline unsigned saturate_cast(float v) { return cvRound(v); } template<> inline unsigned saturate_cast(double v) { return cvRound(v); } //! @endcond } #endif // __cplusplus //! @} core_utils #endif //__OPENCV_HAL_H__