/** @file */ /* The MIT License * * Copyright (c) 2008, Naotoshi Seo * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #ifndef CV_GAUSSNORM_INCLUDED #define CV_GAUSSNORM_INCLUDED #include "cv.h" #include "cvaux.h" #define _USE_MATH_DEFINES #include #include "cvmatelemcn.h" // @todo // CVAPI(void) cvMatGaussNorm( const CvMat* samples, CvMat* dst ); // #define cvGaussNorm( sample, dst ) cvMatGaussNorm( sample, dst ) // CVAPI(void) cvImgGaussNorm( const IplImage* img, IplImage* normed ) { // IplImage* sample, samplehdr; // IplImage* dst, dsthdr; // sample = cvReshape( img, &samplehdr, 1, img->nChannels ); // dst = cvReshape( normed, &dsthdr, 1, dst->nChannels ); // // make sure how it is reshaped // cvMatGaussNorm( sample, dst ); // } /** * Zero mean and unit covariance normalization of an image * Each channel is processed independently * * @param src input image * @param dst normalized image. 32F or 64F should be preferred. */ CVAPI(void) cvGaussNormImage( const CvArr* src, CvArr* dst ) { CvMat instub, *in = (CvMat*)src; CvMat outstub, *out = (CvMat*)dst; int coi = 0; CvScalar mean, std; int rows, cols, nChannels; int ch, row, col; CvScalar inval; CvMat *tmp_in; CvMat *sub_in; CV_FUNCNAME( "cvGaussNormImage" ); __CV_BEGIN__; if( !CV_IS_MAT(in) ) { CV_CALL( in = cvGetMat( in, &instub, &coi ) ); if (coi != 0) CV_ERROR_FROM_CODE(CV_BadCOI); } if( !CV_IS_MAT(out) ) { CV_CALL( out = cvGetMat( out, &outstub, &coi ) ); if (coi != 0) CV_ERROR_FROM_CODE(CV_BadCOI); } CV_ASSERT( in->rows == out->rows && in->cols == out->cols ); CV_ASSERT( CV_MAT_CN(in->type) == CV_MAT_CN(out->type) ); if( in->type != out->type ) { tmp_in = cvCreateMat( out->rows, out->cols, out->type ); cvConvert( in, tmp_in ); } else { tmp_in = in; } sub_in = cvCreateMat( out->rows, out->cols, out->type ); cvAvgSdv( tmp_in, &mean, &std ); cvSubS( tmp_in, mean, sub_in ); //cvScale( sub_in, out, 1.0/std.val[0] ); // do channel rows = out->rows; cols = out->cols; nChannels = CV_MAT_CN(out->type); for( row = 0; row < rows; row++ ) { for( col = 0; col < cols; col++ ) { inval = cvGet2D( sub_in, row, col ); for( ch = 0; ch < nChannels; ch++ ) { inval.val[ch] /= std.val[ch]; } cvSet2D( out, row, col, inval ); } } if( in->type != out->type ) { cvReleaseMat( &tmp_in ); } cvReleaseMat( &sub_in ); __CV_END__; } #endif