/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_CORE_CVSTD_HPP__ #define __OPENCV_CORE_CVSTD_HPP__ #ifndef __cplusplus # error cvstd.hpp header must be compiled as C++ #endif #include "opencv2/core/cvdef.h" #include #include #include #ifndef OPENCV_NOSTL # include #endif // import useful primitives from stl #ifndef OPENCV_NOSTL_TRANSITIONAL # include # include # include //for abs(int) # include namespace cv { using std::min; using std::max; using std::abs; using std::swap; using std::sqrt; using std::exp; using std::pow; using std::log; } namespace std { static inline uchar abs(uchar a) { return a; } static inline ushort abs(ushort a) { return a; } static inline unsigned abs(unsigned a) { return a; } static inline uint64 abs(uint64 a) { return a; } } #else namespace cv { template static inline T min(T a, T b) { return a < b ? a : b; } template static inline T max(T a, T b) { return a > b ? a : b; } template static inline T abs(T a) { return a < 0 ? -a : a; } template static inline void swap(T& a, T& b) { T tmp = a; a = b; b = tmp; } template<> inline uchar abs(uchar a) { return a; } template<> inline ushort abs(ushort a) { return a; } template<> inline unsigned abs(unsigned a) { return a; } template<> inline uint64 abs(uint64 a) { return a; } } #endif namespace cv { //! @addtogroup core_utils //! @{ //////////////////////////// memory management functions //////////////////////////// /** @brief Allocates an aligned memory buffer. The function allocates the buffer of the specified size and returns it. When the buffer size is 16 bytes or more, the returned buffer is aligned to 16 bytes. @param bufSize Allocated buffer size. */ CV_EXPORTS void* fastMalloc(size_t bufSize); /** @brief Deallocates a memory buffer. The function deallocates the buffer allocated with fastMalloc . If NULL pointer is passed, the function does nothing. C version of the function clears the pointer *pptr* to avoid problems with double memory deallocation. @param ptr Pointer to the allocated buffer. */ CV_EXPORTS void fastFree(void* ptr); /*! The STL-compilant memory Allocator based on cv::fastMalloc() and cv::fastFree() */ template class Allocator { public: typedef _Tp value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; typedef size_t size_type; typedef ptrdiff_t difference_type; template class rebind { typedef Allocator other; }; explicit Allocator() {} ~Allocator() {} explicit Allocator(Allocator const&) {} template explicit Allocator(Allocator const&) {} // address pointer address(reference r) { return &r; } const_pointer address(const_reference r) { return &r; } pointer allocate(size_type count, const void* =0) { return reinterpret_cast(fastMalloc(count * sizeof (_Tp))); } void deallocate(pointer p, size_type) { fastFree(p); } void construct(pointer p, const _Tp& v) { new(static_cast(p)) _Tp(v); } void destroy(pointer p) { p->~_Tp(); } size_type max_size() const { return cv::max(static_cast<_Tp>(-1)/sizeof(_Tp), 1); } }; //! @} core_utils //! @cond IGNORED namespace detail { // Metafunction to avoid taking a reference to void. template struct RefOrVoid { typedef T& type; }; template<> struct RefOrVoid{ typedef void type; }; template<> struct RefOrVoid{ typedef const void type; }; template<> struct RefOrVoid{ typedef volatile void type; }; template<> struct RefOrVoid{ typedef const volatile void type; }; // This class would be private to Ptr, if it didn't have to be a non-template. struct PtrOwner; } template struct DefaultDeleter { void operator () (Y* p) const; }; //! @endcond //! @addtogroup core_basic //! @{ /** @brief Template class for smart pointers with shared ownership A Ptr\ pretends to be a pointer to an object of type T. Unlike an ordinary pointer, however, the object will be automatically cleaned up once all Ptr instances pointing to it are destroyed. Ptr is similar to boost::shared_ptr that is part of the Boost library () and std::shared_ptr from the [C++11](http://en.wikipedia.org/wiki/C++11) standard. This class provides the following advantages: - Default constructor, copy constructor, and assignment operator for an arbitrary C++ class or C structure. For some objects, like files, windows, mutexes, sockets, and others, a copy constructor or an assignment operator are difficult to define. For some other objects, like complex classifiers in OpenCV, copy constructors are absent and not easy to implement. Finally, some of complex OpenCV and your own data structures may be written in C. However, copy constructors and default constructors can simplify programming a lot. Besides, they are often required (for example, by STL containers). By using a Ptr to such an object instead of the object itself, you automatically get all of the necessary constructors and the assignment operator. - *O(1)* complexity of the above-mentioned operations. While some structures, like std::vector, provide a copy constructor and an assignment operator, the operations may take a considerable amount of time if the data structures are large. But if the structures are put into a Ptr, the overhead is small and independent of the data size. - Automatic and customizable cleanup, even for C structures. See the example below with FILE\*. - Heterogeneous collections of objects. The standard STL and most other C++ and OpenCV containers can store only objects of the same type and the same size. The classical solution to store objects of different types in the same container is to store pointers to the base class (Base\*) instead but then you lose the automatic memory management. Again, by using Ptr\ instead of raw pointers, you can solve the problem. A Ptr is said to *own* a pointer - that is, for each Ptr there is a pointer that will be deleted once all Ptr instances that own it are destroyed. The owned pointer may be null, in which case nothing is deleted. Each Ptr also *stores* a pointer. The stored pointer is the pointer the Ptr pretends to be; that is, the one you get when you use Ptr::get or the conversion to T\*. It's usually the same as the owned pointer, but if you use casts or the general shared-ownership constructor, the two may diverge: the Ptr will still own the original pointer, but will itself point to something else. The owned pointer is treated as a black box. The only thing Ptr needs to know about it is how to delete it. This knowledge is encapsulated in the *deleter* - an auxiliary object that is associated with the owned pointer and shared between all Ptr instances that own it. The default deleter is an instance of DefaultDeleter, which uses the standard C++ delete operator; as such it will work with any pointer allocated with the standard new operator. However, if the pointer must be deleted in a different way, you must specify a custom deleter upon Ptr construction. A deleter is simply a callable object that accepts the pointer as its sole argument. For example, if you want to wrap FILE, you may do so as follows: @code Ptr f(fopen("myfile.txt", "w"), fclose); if(!f) throw ...; fprintf(f, ....); ... // the file will be closed automatically by f's destructor. @endcode Alternatively, if you want all pointers of a particular type to be deleted the same way, you can specialize DefaultDeleter::operator() for that type, like this: @code namespace cv { template<> void DefaultDeleter::operator ()(FILE * obj) const { fclose(obj); } } @endcode For convenience, the following types from the OpenCV C API already have such a specialization that calls the appropriate release function: - CvCapture - CvFileStorage - CvHaarClassifierCascade - CvMat - CvMatND - CvMemStorage - CvSparseMat - CvVideoWriter - IplImage @note The shared ownership mechanism is implemented with reference counting. As such, cyclic ownership (e.g. when object a contains a Ptr to object b, which contains a Ptr to object a) will lead to all involved objects never being cleaned up. Avoid such situations. @note It is safe to concurrently read (but not write) a Ptr instance from multiple threads and therefore it is normally safe to use it in multi-threaded applications. The same is true for Mat and other C++ OpenCV classes that use internal reference counts. */ template struct Ptr { /** Generic programming support. */ typedef T element_type; /** The default constructor creates a null Ptr - one that owns and stores a null pointer. */ Ptr(); /** If p is null, these are equivalent to the default constructor. Otherwise, these constructors assume ownership of p - that is, the created Ptr owns and stores p and assumes it is the sole owner of it. Don't use them if p is already owned by another Ptr, or else p will get deleted twice. With the first constructor, DefaultDeleter\() becomes the associated deleter (so p will eventually be deleted with the standard delete operator). Y must be a complete type at the point of invocation. With the second constructor, d becomes the associated deleter. Y\* must be convertible to T\*. @param p Pointer to own. @note It is often easier to use makePtr instead. */ template #ifdef DISABLE_OPENCV_24_COMPATIBILITY explicit #endif Ptr(Y* p); /** @overload @param d Deleter to use for the owned pointer. @param p Pointer to own. */ template Ptr(Y* p, D d); /** These constructors create a Ptr that shares ownership with another Ptr - that is, own the same pointer as o. With the first two, the same pointer is stored, as well; for the second, Y\* must be convertible to T\*. With the third, p is stored, and Y may be any type. This constructor allows to have completely unrelated owned and stored pointers, and should be used with care to avoid confusion. A relatively benign use is to create a non-owning Ptr, like this: @code ptr = Ptr(Ptr(), dont_delete_me); // owns nothing; will not delete the pointer. @endcode @param o Ptr to share ownership with. */ Ptr(const Ptr& o); /** @overload @param o Ptr to share ownership with. */ template Ptr(const Ptr& o); /** @overload @param o Ptr to share ownership with. @param p Pointer to store. */ template Ptr(const Ptr& o, T* p); /** The destructor is equivalent to calling Ptr::release. */ ~Ptr(); /** Assignment replaces the current Ptr instance with one that owns and stores same pointers as o and then destroys the old instance. @param o Ptr to share ownership with. */ Ptr& operator = (const Ptr& o); /** @overload */ template Ptr& operator = (const Ptr& o); /** If no other Ptr instance owns the owned pointer, deletes it with the associated deleter. Then sets both the owned and the stored pointers to NULL. */ void release(); /** `ptr.reset(...)` is equivalent to `ptr = Ptr(...)`. @param p Pointer to own. */ template void reset(Y* p); /** @overload @param d Deleter to use for the owned pointer. @param p Pointer to own. */ template void reset(Y* p, D d); /** Swaps the owned and stored pointers (and deleters, if any) of this and o. @param o Ptr to swap with. */ void swap(Ptr& o); /** Returns the stored pointer. */ T* get() const; /** Ordinary pointer emulation. */ typename detail::RefOrVoid::type operator * () const; /** Ordinary pointer emulation. */ T* operator -> () const; /** Equivalent to get(). */ operator T* () const; /** ptr.empty() is equivalent to `!ptr.get()`. */ bool empty() const; /** Returns a Ptr that owns the same pointer as this, and stores the same pointer as this, except converted via static_cast to Y*. */ template Ptr staticCast() const; /** Ditto for const_cast. */ template Ptr constCast() const; /** Ditto for dynamic_cast. */ template Ptr dynamicCast() const; private: detail::PtrOwner* owner; T* stored; template friend struct Ptr; // have to do this for the cross-type copy constructor }; /** Equivalent to ptr1.swap(ptr2). Provided to help write generic algorithms. */ template void swap(Ptr& ptr1, Ptr& ptr2); /** Return whether ptr1.get() and ptr2.get() are equal and not equal, respectively. */ template bool operator == (const Ptr& ptr1, const Ptr& ptr2); template bool operator != (const Ptr& ptr1, const Ptr& ptr2); /** `makePtr(...)` is equivalent to `Ptr(new T(...))`. It is shorter than the latter, and it's marginally safer than using a constructor or Ptr::reset, since it ensures that the owned pointer is new and thus not owned by any other Ptr instance. Unfortunately, perfect forwarding is impossible to implement in C++03, and so makePtr is limited to constructors of T that have up to 10 arguments, none of which are non-const references. */ template Ptr makePtr(); /** @overload */ template Ptr makePtr(const A1& a1); /** @overload */ template Ptr makePtr(const A1& a1, const A2& a2); /** @overload */ template Ptr makePtr(const A1& a1, const A2& a2, const A3& a3); /** @overload */ template Ptr makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4); /** @overload */ template Ptr makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5); /** @overload */ template Ptr makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6); /** @overload */ template Ptr makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7); /** @overload */ template Ptr makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8); /** @overload */ template Ptr makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9); /** @overload */ template Ptr makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, const A10& a10); //////////////////////////////// string class //////////////////////////////// class CV_EXPORTS FileNode; //for string constructor from FileNode class CV_EXPORTS String { public: typedef char value_type; typedef char& reference; typedef const char& const_reference; typedef char* pointer; typedef const char* const_pointer; typedef ptrdiff_t difference_type; typedef size_t size_type; typedef char* iterator; typedef const char* const_iterator; static const size_t npos = size_t(-1); explicit String(); String(const String& str); String(const String& str, size_t pos, size_t len = npos); String(const char* s); String(const char* s, size_t n); String(size_t n, char c); String(const char* first, const char* last); template String(Iterator first, Iterator last); explicit String(const FileNode& fn); ~String(); String& operator=(const String& str); String& operator=(const char* s); String& operator=(char c); String& operator+=(const String& str); String& operator+=(const char* s); String& operator+=(char c); size_t size() const; size_t length() const; char operator[](size_t idx) const; char operator[](int idx) const; const char* begin() const; const char* end() const; const char* c_str() const; bool empty() const; void clear(); int compare(const char* s) const; int compare(const String& str) const; void swap(String& str); String substr(size_t pos = 0, size_t len = npos) const; size_t find(const char* s, size_t pos, size_t n) const; size_t find(char c, size_t pos = 0) const; size_t find(const String& str, size_t pos = 0) const; size_t find(const char* s, size_t pos = 0) const; size_t rfind(const char* s, size_t pos, size_t n) const; size_t rfind(char c, size_t pos = npos) const; size_t rfind(const String& str, size_t pos = npos) const; size_t rfind(const char* s, size_t pos = npos) const; size_t find_first_of(const char* s, size_t pos, size_t n) const; size_t find_first_of(char c, size_t pos = 0) const; size_t find_first_of(const String& str, size_t pos = 0) const; size_t find_first_of(const char* s, size_t pos = 0) const; size_t find_last_of(const char* s, size_t pos, size_t n) const; size_t find_last_of(char c, size_t pos = npos) const; size_t find_last_of(const String& str, size_t pos = npos) const; size_t find_last_of(const char* s, size_t pos = npos) const; friend String operator+ (const String& lhs, const String& rhs); friend String operator+ (const String& lhs, const char* rhs); friend String operator+ (const char* lhs, const String& rhs); friend String operator+ (const String& lhs, char rhs); friend String operator+ (char lhs, const String& rhs); String toLowerCase() const; #ifndef OPENCV_NOSTL String(const std::string& str); String(const std::string& str, size_t pos, size_t len = npos); String& operator=(const std::string& str); String& operator+=(const std::string& str); operator std::string() const; friend String operator+ (const String& lhs, const std::string& rhs); friend String operator+ (const std::string& lhs, const String& rhs); #endif private: char* cstr_; size_t len_; char* allocate(size_t len); // len without trailing 0 void deallocate(); }; //! @} core_basic ////////////////////////// cv::String implementation ///////////////////////// //! @cond IGNORED inline String::String() : cstr_(0), len_(0) {} inline String::String(const String& str) : cstr_(str.cstr_), len_(str.len_) { if (cstr_) CV_XADD(((int*)cstr_)-1, 1); } inline String::String(const String& str, size_t pos, size_t len) : cstr_(0), len_(0) { pos = min(pos, str.len_); len = min(str.len_ - pos, len); if (!len) return; if (len == str.len_) { CV_XADD(((int*)str.cstr_)-1, 1); cstr_ = str.cstr_; len_ = str.len_; return; } memcpy(allocate(len), str.cstr_ + pos, len); } inline String::String(const char* s) : cstr_(0), len_(0) { if (!s) return; size_t len = strlen(s); memcpy(allocate(len), s, len); } inline String::String(const char* s, size_t n) : cstr_(0), len_(0) { if (!n) return; memcpy(allocate(n), s, n); } inline String::String(size_t n, char c) : cstr_(0), len_(0) { memset(allocate(n), c, n); } inline String::String(const char* first, const char* last) : cstr_(0), len_(0) { size_t len = (size_t)(last - first); memcpy(allocate(len), first, len); } template inline String::String(Iterator first, Iterator last) : cstr_(0), len_(0) { size_t len = (size_t)(last - first); char* str = allocate(len); while (first != last) { *str++ = *first; ++first; } } inline String::~String() { deallocate(); } inline String& String::operator=(const String& str) { if (&str == this) return *this; deallocate(); if (str.cstr_) CV_XADD(((int*)str.cstr_)-1, 1); cstr_ = str.cstr_; len_ = str.len_; return *this; } inline String& String::operator=(const char* s) { deallocate(); if (!s) return *this; size_t len = strlen(s); memcpy(allocate(len), s, len); return *this; } inline String& String::operator=(char c) { deallocate(); allocate(1)[0] = c; return *this; } inline String& String::operator+=(const String& str) { *this = *this + str; return *this; } inline String& String::operator+=(const char* s) { *this = *this + s; return *this; } inline String& String::operator+=(char c) { *this = *this + c; return *this; } inline size_t String::size() const { return len_; } inline size_t String::length() const { return len_; } inline char String::operator[](size_t idx) const { return cstr_[idx]; } inline char String::operator[](int idx) const { return cstr_[idx]; } inline const char* String::begin() const { return cstr_; } inline const char* String::end() const { return len_ ? cstr_ + 1 : 0; } inline bool String::empty() const { return len_ == 0; } inline const char* String::c_str() const { return cstr_ ? cstr_ : ""; } inline void String::swap(String& str) { cv::swap(cstr_, str.cstr_); cv::swap(len_, str.len_); } inline void String::clear() { deallocate(); } inline int String::compare(const char* s) const { if (cstr_ == s) return 0; return strcmp(c_str(), s); } inline int String::compare(const String& str) const { if (cstr_ == str.cstr_) return 0; return strcmp(c_str(), str.c_str()); } inline String String::substr(size_t pos, size_t len) const { return String(*this, pos, len); } inline size_t String::find(const char* s, size_t pos, size_t n) const { if (n == 0 || pos + n > len_) return npos; const char* lmax = cstr_ + len_ - n; for (const char* i = cstr_ + pos; i <= lmax; ++i) { size_t j = 0; while (j < n && s[j] == i[j]) ++j; if (j == n) return (size_t)(i - cstr_); } return npos; } inline size_t String::find(char c, size_t pos) const { return find(&c, pos, 1); } inline size_t String::find(const String& str, size_t pos) const { return find(str.c_str(), pos, str.len_); } inline size_t String::find(const char* s, size_t pos) const { if (pos >= len_ || !s[0]) return npos; const char* lmax = cstr_ + len_; for (const char* i = cstr_ + pos; i < lmax; ++i) { size_t j = 0; while (s[j] && s[j] == i[j]) { if(i + j >= lmax) return npos; ++j; } if (!s[j]) return (size_t)(i - cstr_); } return npos; } inline size_t String::rfind(const char* s, size_t pos, size_t n) const { if (n > len_) return npos; if (pos > len_ - n) pos = len_ - n; for (const char* i = cstr_ + pos; i >= cstr_; --i) { size_t j = 0; while (j < n && s[j] == i[j]) ++j; if (j == n) return (size_t)(i - cstr_); } return npos; } inline size_t String::rfind(char c, size_t pos) const { return rfind(&c, pos, 1); } inline size_t String::rfind(const String& str, size_t pos) const { return rfind(str.c_str(), pos, str.len_); } inline size_t String::rfind(const char* s, size_t pos) const { return rfind(s, pos, strlen(s)); } inline size_t String::find_first_of(const char* s, size_t pos, size_t n) const { if (n == 0 || pos + n > len_) return npos; const char* lmax = cstr_ + len_; for (const char* i = cstr_ + pos; i < lmax; ++i) { for (size_t j = 0; j < n; ++j) if (s[j] == *i) return (size_t)(i - cstr_); } return npos; } inline size_t String::find_first_of(char c, size_t pos) const { return find_first_of(&c, pos, 1); } inline size_t String::find_first_of(const String& str, size_t pos) const { return find_first_of(str.c_str(), pos, str.len_); } inline size_t String::find_first_of(const char* s, size_t pos) const { if (pos >= len_ || !s[0]) return npos; const char* lmax = cstr_ + len_; for (const char* i = cstr_ + pos; i < lmax; ++i) { for (size_t j = 0; s[j]; ++j) if (s[j] == *i) return (size_t)(i - cstr_); } return npos; } inline size_t String::find_last_of(const char* s, size_t pos, size_t n) const { if (pos >= len_) pos = len_ - 1; for (const char* i = cstr_ + pos; i >= cstr_; --i) { for (size_t j = 0; j < n; ++j) if (s[j] == *i) return (size_t)(i - cstr_); } return npos; } inline size_t String::find_last_of(char c, size_t pos) const { return find_last_of(&c, pos, 1); } inline size_t String::find_last_of(const String& str, size_t pos) const { return find_last_of(str.c_str(), pos, str.len_); } inline size_t String::find_last_of(const char* s, size_t pos) const { if (pos >= len_) pos = len_ - 1; for (const char* i = cstr_ + pos; i >= cstr_; --i) { for (size_t j = 0; s[j]; ++j) if (s[j] == *i) return (size_t)(i - cstr_); } return npos; } inline String String::toLowerCase() const { String res(cstr_, len_); for (size_t i = 0; i < len_; ++i) res.cstr_[i] = (char) ::tolower(cstr_[i]); return res; } //! @endcond // ************************* cv::String non-member functions ************************* //! @relates cv::String //! @{ inline String operator + (const String& lhs, const String& rhs) { String s; s.allocate(lhs.len_ + rhs.len_); memcpy(s.cstr_, lhs.cstr_, lhs.len_); memcpy(s.cstr_ + lhs.len_, rhs.cstr_, rhs.len_); return s; } inline String operator + (const String& lhs, const char* rhs) { String s; size_t rhslen = strlen(rhs); s.allocate(lhs.len_ + rhslen); memcpy(s.cstr_, lhs.cstr_, lhs.len_); memcpy(s.cstr_ + lhs.len_, rhs, rhslen); return s; } inline String operator + (const char* lhs, const String& rhs) { String s; size_t lhslen = strlen(lhs); s.allocate(lhslen + rhs.len_); memcpy(s.cstr_, lhs, lhslen); memcpy(s.cstr_ + lhslen, rhs.cstr_, rhs.len_); return s; } inline String operator + (const String& lhs, char rhs) { String s; s.allocate(lhs.len_ + 1); memcpy(s.cstr_, lhs.cstr_, lhs.len_); s.cstr_[lhs.len_] = rhs; return s; } inline String operator + (char lhs, const String& rhs) { String s; s.allocate(rhs.len_ + 1); s.cstr_[0] = lhs; memcpy(s.cstr_ + 1, rhs.cstr_, rhs.len_); return s; } static inline bool operator== (const String& lhs, const String& rhs) { return 0 == lhs.compare(rhs); } static inline bool operator== (const char* lhs, const String& rhs) { return 0 == rhs.compare(lhs); } static inline bool operator== (const String& lhs, const char* rhs) { return 0 == lhs.compare(rhs); } static inline bool operator!= (const String& lhs, const String& rhs) { return 0 != lhs.compare(rhs); } static inline bool operator!= (const char* lhs, const String& rhs) { return 0 != rhs.compare(lhs); } static inline bool operator!= (const String& lhs, const char* rhs) { return 0 != lhs.compare(rhs); } static inline bool operator< (const String& lhs, const String& rhs) { return lhs.compare(rhs) < 0; } static inline bool operator< (const char* lhs, const String& rhs) { return rhs.compare(lhs) > 0; } static inline bool operator< (const String& lhs, const char* rhs) { return lhs.compare(rhs) < 0; } static inline bool operator<= (const String& lhs, const String& rhs) { return lhs.compare(rhs) <= 0; } static inline bool operator<= (const char* lhs, const String& rhs) { return rhs.compare(lhs) >= 0; } static inline bool operator<= (const String& lhs, const char* rhs) { return lhs.compare(rhs) <= 0; } static inline bool operator> (const String& lhs, const String& rhs) { return lhs.compare(rhs) > 0; } static inline bool operator> (const char* lhs, const String& rhs) { return rhs.compare(lhs) < 0; } static inline bool operator> (const String& lhs, const char* rhs) { return lhs.compare(rhs) > 0; } static inline bool operator>= (const String& lhs, const String& rhs) { return lhs.compare(rhs) >= 0; } static inline bool operator>= (const char* lhs, const String& rhs) { return rhs.compare(lhs) <= 0; } static inline bool operator>= (const String& lhs, const char* rhs) { return lhs.compare(rhs) >= 0; } //! @} relates cv::String } // cv #ifndef OPENCV_NOSTL_TRANSITIONAL namespace std { static inline void swap(cv::String& a, cv::String& b) { a.swap(b); } } #else namespace cv { template<> inline void swap(cv::String& a, cv::String& b) { a.swap(b); } } #endif #include "opencv2/core/ptr.inl.hpp" #endif //__OPENCV_CORE_CVSTD_HPP__