You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
123 lines
4.1 KiB
123 lines
4.1 KiB
9 years ago
|
/** @file */
|
||
|
/* Copyright (c) 2008, Naotoshi Seo. All rights reserved.
|
||
|
*
|
||
|
* The program is free to use for non-commercial academic purposes,
|
||
|
* but for course works, you must understand what is going inside to
|
||
|
* use. The program can be used, modified, or re-distributed for any
|
||
|
* purposes only if you or one of your group understand not only
|
||
|
* programming codes but also theory and math behind (if any).
|
||
|
* Please contact the authors if you are interested in using the
|
||
|
* program without meeting the above conditions.
|
||
|
*/
|
||
|
|
||
|
#include "cv.h"
|
||
|
#include "cvaux.h"
|
||
|
#include <stdio.h>
|
||
|
#include <iostream>
|
||
|
#define _USE_MATH_DEFINES
|
||
|
#include <math.h>
|
||
|
|
||
|
#ifndef CV_PCADIST_INCLUDED
|
||
|
#define CV_PCADIST_INCLUDED
|
||
|
|
||
|
#ifndef NO_DOXYGEN
|
||
|
CVAPI(void)
|
||
|
cvMatPcaDist( const CvMat* samples, const CvMat* avg,
|
||
|
const CvMat* eigenvectors, CvMat* dists );
|
||
|
CV_INLINE double
|
||
|
cvPcaDist( const CvMat* sample, const CvMat* avg,
|
||
|
const CvMat* eigenvectors );
|
||
|
#endif
|
||
|
|
||
|
/**
|
||
|
* Distance between sample and PCA subspace, i.e, reconstruction error
|
||
|
*
|
||
|
* @param samples D x N sample vectors
|
||
|
* @param avg D x 1 mean vector
|
||
|
* @param eigenvectors M x D or D x M (automatically adjusted) eigen vectors
|
||
|
* @param dists 1 x N computed distances
|
||
|
*
|
||
|
* @see CVAPI(void) cvCalcPCA( const CvArr* data, CvArr* avg, CvArr* eigenvalues, CvArr* eigenvectors, int flags );
|
||
|
* @see CVAPI(void) cvProjectPCA( const CvArr* data, const CvArr* avg, const CvArr* eigenvectors, CvArr* result );
|
||
|
* @see CVAPI(void) cvBackProjectPCA( const CvArr* proj, const CvArr* avg,const CvArr* eigenvects, CvArr* result );
|
||
|
*/
|
||
|
CVAPI(void)
|
||
|
cvMatPcaDist( const CvMat* samples, const CvMat* avg,
|
||
|
const CvMat* eigenvectors, CvMat* dists )
|
||
|
{
|
||
|
int D = samples->rows;
|
||
|
int N = samples->cols;
|
||
|
int M = (eigenvectors->rows == D) ? eigenvectors->cols : eigenvectors->rows;
|
||
|
int type = samples->type;
|
||
|
int d, n;
|
||
|
CvMat *_eigenvectors; // cvProjectPCA requires M x D vec
|
||
|
CvMat *proj = cvCreateMat( N, M, type );
|
||
|
CvMat *subproj, subprojhdr;
|
||
|
CvMat *samples0 = cvCreateMat( D, N, type ); // mean subtracted samples
|
||
|
CvMat *subsamples0, subsamples0hdr;
|
||
|
CvMat *_proj;
|
||
|
CV_FUNCNAME( "cvMatPcaDist" );
|
||
|
__CV_BEGIN__;
|
||
|
CV_ASSERT( CV_IS_MAT(samples) );
|
||
|
CV_ASSERT( CV_IS_MAT(avg) );
|
||
|
CV_ASSERT( CV_IS_MAT(eigenvectors) );
|
||
|
CV_ASSERT( D == eigenvectors->rows || D == eigenvectors->cols );
|
||
|
CV_ASSERT( D == avg->rows && 1 == avg->cols );
|
||
|
CV_ASSERT( 1 == dists->rows && N == dists->cols );
|
||
|
if( D == eigenvectors->rows ) { // support transpose
|
||
|
_eigenvectors = cvCreateMat( M, D, type );
|
||
|
cvT( eigenvectors, _eigenvectors );
|
||
|
} else {
|
||
|
_eigenvectors = (CvMat*)eigenvectors;
|
||
|
}
|
||
|
|
||
|
//cvProjectPCA( samples, avg, _eigenvectors, proj );
|
||
|
for( n = 0; n < N; n++ ) { // want mean subtracted samples for laster too
|
||
|
for( d = 0; d < D; d++ ) {
|
||
|
cvmSet( samples0, d, n, cvmGet( samples, d, n ) - cvmGet( avg, d, 0 ) );
|
||
|
}
|
||
|
}
|
||
|
_proj = cvCreateMat( M, N, type );
|
||
|
cvMatMul( _eigenvectors, samples0, _proj );
|
||
|
cvT( _proj, proj );
|
||
|
cvReleaseMat( &_proj );
|
||
|
|
||
|
// distance from feature space
|
||
|
for( n = 0; n < N; n++ ) {
|
||
|
subsamples0 = cvGetCol( samples0, &subsamples0hdr, n );
|
||
|
subproj = cvGetRow( proj, &subprojhdr, n );
|
||
|
cvmSet( dists, 0, n, pow(cvNorm( subsamples0, NULL, CV_L2 ),2) - pow(cvNorm( subproj, NULL, CV_L2 ),2) );
|
||
|
}
|
||
|
|
||
|
cvReleaseMat( &proj );
|
||
|
cvReleaseMat( &samples0 );
|
||
|
if( D == eigenvectors->rows ) {
|
||
|
cvReleaseMat( &_eigenvectors );
|
||
|
}
|
||
|
__CV_END__;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Distance between sample and PCA subspace, i.e, reconstruction error
|
||
|
*
|
||
|
* @param sample D x 1 feature vector
|
||
|
* @param avg D x 1 mean vector
|
||
|
* @param eigenvectors M x D eigen vectors
|
||
|
* @return double
|
||
|
*/
|
||
|
CV_INLINE double
|
||
|
cvPcaDist( const CvMat* sample, const CvMat* avg, const CvMat* eigenvectors )
|
||
|
{
|
||
|
double prob;
|
||
|
CvMat *_dists = cvCreateMat( 1, 1, sample->type );
|
||
|
|
||
|
cvMatPcaDist( sample, avg, eigenvectors, _dists );
|
||
|
prob = cvmGet(_dists, 0, 0);
|
||
|
|
||
|
cvReleaseMat( &_dists );
|
||
|
return prob;
|
||
|
}
|
||
|
|
||
|
|
||
|
#endif
|