You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

176 lines
5.9 KiB

/** @file */
/* The MIT License
*
* Copyright (c) 2008, Naotoshi Seo <sonots(at)sonots.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef CV_GAUSSPDF_INCLUDED
#define CV_GAUSSPDF_INCLUDED
#include "cv.h"
#include "cvaux.h"
#define _USE_MATH_DEFINES
#include <math.h>
//CVAPI(void)
//cvMatGaussPdf( const CvMat* samples, const CvMat* mean, const CvMat* cov,
// CvMat* probs, bool normalize = false, bool logprob = false );
//CV_INLINE double
//cvGaussPdf( const CvMat* sample, const CvMat* mean, const CvMat* cov,
// bool normalize = false, bool logprob = false );
/**
* Compute multivariate gaussian pdf for a set of sample vectors
*
* Example)
* @code
* double vs[] = { 3, 4, 5,
* 3, 4, 5 }; // col vectors
* double m[] = { 5,
* 5 };
* double a[] = { 1, 0,
* 0, 1 };
* CvMat vecs = cvMat(2, 3, CV_64FC1, vs);
* CvMat mean = cvMat(2, 1, CV_64FC1, m);
* CvMat cov = cvMat(2, 2, CV_64FC1, a);
* CvMat *probs = cvCreateMat(1, 3, CV_64FC1);
* cvMatGaussPdf( &vecs, &mean, &cov, probs, false, false);
* cvMatPrint( probs ); // 0.018316 0.367879 1.000000
* cvMatGaussPdf( &vecs, &mean, &cov, probs, true, false);
* cvMatPrint( probs ); // 0.002915 0.058550 0.159155
* cvMatGaussPdf( &vecs, &mean, &cov, probs, false, true);
* cvMatPrint( probs ); // -4.000000 -1.000000 -0.000000
* cvMatGaussPdf( &vecs, &mean, &cov, probs, true, true);
* cvMatPrint( probs ); // -5.837877 -2.837877 -1.837877
* cvReleaseMat( &probs );
* @endcode
*
* @param samples D x N data vectors where D is the number of
* dimensions and N is the number of data
* (Note: not N x D for clearness of matrix operation)
* @param mean D x 1 mean vector
* @param cov D x D covariance matrix
* @param probs 1 x N computed probabilites
* @param normalize Compute normalization term or not
* @param logprob Log probability or not
* @return CVAPI(void)
* @see cvCalcCovarMatrix, cvAvg
*/
CVAPI(void)
cvMatGaussPdf( const CvMat* samples,
const CvMat* mean,
const CvMat* cov,
CvMat* probs,
bool normalize CV_DEFAULT(true),
bool logprob CV_DEFAULT(false) )
{
int D = samples->rows;
int N = samples->cols;
int type = samples->type;
CV_FUNCNAME( "cvMatGaussPdf" ); // error handling
__CV_BEGIN__;
CV_ASSERT( CV_IS_MAT(samples) );
CV_ASSERT( CV_IS_MAT(mean) );
CV_ASSERT( CV_IS_MAT(cov) );
CV_ASSERT( CV_IS_MAT(probs) );
CV_ASSERT( D == mean->rows && 1 == mean->cols );
CV_ASSERT( D == cov->rows && D == cov->cols );
CV_ASSERT( 1 == probs->rows && N == probs->cols );
CvMat *invcov = cvCreateMat( D, D, type );
cvInvert( cov, invcov, CV_SVD );
CvMat *sample = cvCreateMat( D, 1, type );
CvMat *subsample = cvCreateMat( D, 1, type );
CvMat *subsample_T = cvCreateMat( 1, D, type );
CvMat *value = cvCreateMat( 1, 1, type );
double prob;
for( int n = 0; n < N; n++ )
{
cvGetCol( samples, sample, n );
cvSub( sample, mean, subsample );
cvTranspose( subsample, subsample_T );
cvMatMul( subsample_T, invcov, subsample_T );
cvMatMul( subsample_T, subsample, value );
prob = -0.5 * cvmGet(value, 0, 0);
if( !logprob ) prob = exp( prob );
cvmSet( probs, 0, n, prob );
}
if( normalize )
{
double norm = pow( 2* M_PI, D/2.0 ) * sqrt( cvDet( cov ) );
if( logprob ) cvSubS( probs, cvScalar( log( norm ) ), probs );
else cvConvertScale( probs, probs, 1.0 / norm );
}
cvReleaseMat( &invcov );
cvReleaseMat( &sample );
cvReleaseMat( &subsample );
cvReleaseMat( &subsample_T );
cvReleaseMat( &value );
__CV_END__;
}
/**
* Compute multivariate gaussian pdf
*
* Example)
* @code
* double v[] = { 3,
* 3 };
* double m[] = { 5,
* 5 };
* double a[] = { 1, 0,
* 0, 1 };
* CvMat vec = cvMat(2, 1, CV_64FC1, v);
* CvMat mean = cvMat(2, 1, CV_64FC1, m);
* CvMat cov = cvMat(2, 2, CV_64FC1, a);
* std::cout << cvGaussPdf( &vec, &mean, &cov, false ) << std::endl;
* @endcode
*
* @param sample D x 1 data vector
* @param mean D x 1 mean vector
* @param cov D x D covariance matrix
* @param normalize Compute normalization term or not
* @param logprob Log probability or not
* @return double probability
* @see cvCalcCovarMatrix, cvAvg
* @see cvMatGaussPdf
*/
CV_INLINE double
cvGaussPdf( const CvMat* sample, const CvMat* mean, const CvMat* cov,
bool normalize CV_DEFAULT(true), bool logprob CV_DEFAULT(false) )
{
double prob;
CvMat *_probs = cvCreateMat( 1, 1, sample->type );
cvMatGaussPdf( sample, mean, cov, _probs, normalize, logprob );
prob = cvmGet(_probs, 0, 0);
cvReleaseMat( &_probs );
return prob;
}
#endif