You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
176 lines
5.9 KiB
176 lines
5.9 KiB
9 years ago
|
/** @file */
|
||
|
/* The MIT License
|
||
|
*
|
||
|
* Copyright (c) 2008, Naotoshi Seo <sonots(at)sonots.com>
|
||
|
*
|
||
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
* of this software and associated documentation files (the "Software"), to deal
|
||
|
* in the Software without restriction, including without limitation the rights
|
||
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
* copies of the Software, and to permit persons to whom the Software is
|
||
|
* furnished to do so, subject to the following conditions:
|
||
|
*
|
||
|
* The above copyright notice and this permission notice shall be included in
|
||
|
* all copies or substantial portions of the Software.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
|
* THE SOFTWARE.
|
||
|
*/
|
||
|
#ifndef CV_GAUSSPDF_INCLUDED
|
||
|
#define CV_GAUSSPDF_INCLUDED
|
||
|
|
||
|
#include "cv.h"
|
||
|
#include "cvaux.h"
|
||
|
#define _USE_MATH_DEFINES
|
||
|
#include <math.h>
|
||
|
|
||
|
//CVAPI(void)
|
||
|
//cvMatGaussPdf( const CvMat* samples, const CvMat* mean, const CvMat* cov,
|
||
|
// CvMat* probs, bool normalize = false, bool logprob = false );
|
||
|
//CV_INLINE double
|
||
|
//cvGaussPdf( const CvMat* sample, const CvMat* mean, const CvMat* cov,
|
||
|
// bool normalize = false, bool logprob = false );
|
||
|
|
||
|
/**
|
||
|
* Compute multivariate gaussian pdf for a set of sample vectors
|
||
|
*
|
||
|
* Example)
|
||
|
* @code
|
||
|
* double vs[] = { 3, 4, 5,
|
||
|
* 3, 4, 5 }; // col vectors
|
||
|
* double m[] = { 5,
|
||
|
* 5 };
|
||
|
* double a[] = { 1, 0,
|
||
|
* 0, 1 };
|
||
|
* CvMat vecs = cvMat(2, 3, CV_64FC1, vs);
|
||
|
* CvMat mean = cvMat(2, 1, CV_64FC1, m);
|
||
|
* CvMat cov = cvMat(2, 2, CV_64FC1, a);
|
||
|
* CvMat *probs = cvCreateMat(1, 3, CV_64FC1);
|
||
|
* cvMatGaussPdf( &vecs, &mean, &cov, probs, false, false);
|
||
|
* cvMatPrint( probs ); // 0.018316 0.367879 1.000000
|
||
|
* cvMatGaussPdf( &vecs, &mean, &cov, probs, true, false);
|
||
|
* cvMatPrint( probs ); // 0.002915 0.058550 0.159155
|
||
|
* cvMatGaussPdf( &vecs, &mean, &cov, probs, false, true);
|
||
|
* cvMatPrint( probs ); // -4.000000 -1.000000 -0.000000
|
||
|
* cvMatGaussPdf( &vecs, &mean, &cov, probs, true, true);
|
||
|
* cvMatPrint( probs ); // -5.837877 -2.837877 -1.837877
|
||
|
* cvReleaseMat( &probs );
|
||
|
* @endcode
|
||
|
*
|
||
|
* @param samples D x N data vectors where D is the number of
|
||
|
* dimensions and N is the number of data
|
||
|
* (Note: not N x D for clearness of matrix operation)
|
||
|
* @param mean D x 1 mean vector
|
||
|
* @param cov D x D covariance matrix
|
||
|
* @param probs 1 x N computed probabilites
|
||
|
* @param normalize Compute normalization term or not
|
||
|
* @param logprob Log probability or not
|
||
|
* @return CVAPI(void)
|
||
|
* @see cvCalcCovarMatrix, cvAvg
|
||
|
*/
|
||
|
CVAPI(void)
|
||
|
cvMatGaussPdf( const CvMat* samples,
|
||
|
const CvMat* mean,
|
||
|
const CvMat* cov,
|
||
|
CvMat* probs,
|
||
|
bool normalize CV_DEFAULT(true),
|
||
|
bool logprob CV_DEFAULT(false) )
|
||
|
{
|
||
|
int D = samples->rows;
|
||
|
int N = samples->cols;
|
||
|
int type = samples->type;
|
||
|
CV_FUNCNAME( "cvMatGaussPdf" ); // error handling
|
||
|
__CV_BEGIN__;
|
||
|
CV_ASSERT( CV_IS_MAT(samples) );
|
||
|
CV_ASSERT( CV_IS_MAT(mean) );
|
||
|
CV_ASSERT( CV_IS_MAT(cov) );
|
||
|
CV_ASSERT( CV_IS_MAT(probs) );
|
||
|
CV_ASSERT( D == mean->rows && 1 == mean->cols );
|
||
|
CV_ASSERT( D == cov->rows && D == cov->cols );
|
||
|
CV_ASSERT( 1 == probs->rows && N == probs->cols );
|
||
|
|
||
|
CvMat *invcov = cvCreateMat( D, D, type );
|
||
|
cvInvert( cov, invcov, CV_SVD );
|
||
|
|
||
|
CvMat *sample = cvCreateMat( D, 1, type );
|
||
|
CvMat *subsample = cvCreateMat( D, 1, type );
|
||
|
CvMat *subsample_T = cvCreateMat( 1, D, type );
|
||
|
CvMat *value = cvCreateMat( 1, 1, type );
|
||
|
double prob;
|
||
|
for( int n = 0; n < N; n++ )
|
||
|
{
|
||
|
cvGetCol( samples, sample, n );
|
||
|
|
||
|
cvSub( sample, mean, subsample );
|
||
|
cvTranspose( subsample, subsample_T );
|
||
|
cvMatMul( subsample_T, invcov, subsample_T );
|
||
|
cvMatMul( subsample_T, subsample, value );
|
||
|
prob = -0.5 * cvmGet(value, 0, 0);
|
||
|
if( !logprob ) prob = exp( prob );
|
||
|
|
||
|
cvmSet( probs, 0, n, prob );
|
||
|
}
|
||
|
if( normalize )
|
||
|
{
|
||
|
double norm = pow( 2* M_PI, D/2.0 ) * sqrt( cvDet( cov ) );
|
||
|
if( logprob ) cvSubS( probs, cvScalar( log( norm ) ), probs );
|
||
|
else cvConvertScale( probs, probs, 1.0 / norm );
|
||
|
}
|
||
|
|
||
|
cvReleaseMat( &invcov );
|
||
|
cvReleaseMat( &sample );
|
||
|
cvReleaseMat( &subsample );
|
||
|
cvReleaseMat( &subsample_T );
|
||
|
cvReleaseMat( &value );
|
||
|
|
||
|
__CV_END__;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Compute multivariate gaussian pdf
|
||
|
*
|
||
|
* Example)
|
||
|
* @code
|
||
|
* double v[] = { 3,
|
||
|
* 3 };
|
||
|
* double m[] = { 5,
|
||
|
* 5 };
|
||
|
* double a[] = { 1, 0,
|
||
|
* 0, 1 };
|
||
|
* CvMat vec = cvMat(2, 1, CV_64FC1, v);
|
||
|
* CvMat mean = cvMat(2, 1, CV_64FC1, m);
|
||
|
* CvMat cov = cvMat(2, 2, CV_64FC1, a);
|
||
|
* std::cout << cvGaussPdf( &vec, &mean, &cov, false ) << std::endl;
|
||
|
* @endcode
|
||
|
*
|
||
|
* @param sample D x 1 data vector
|
||
|
* @param mean D x 1 mean vector
|
||
|
* @param cov D x D covariance matrix
|
||
|
* @param normalize Compute normalization term or not
|
||
|
* @param logprob Log probability or not
|
||
|
* @return double probability
|
||
|
* @see cvCalcCovarMatrix, cvAvg
|
||
|
* @see cvMatGaussPdf
|
||
|
*/
|
||
|
CV_INLINE double
|
||
|
cvGaussPdf( const CvMat* sample, const CvMat* mean, const CvMat* cov,
|
||
|
bool normalize CV_DEFAULT(true), bool logprob CV_DEFAULT(false) )
|
||
|
{
|
||
|
double prob;
|
||
|
CvMat *_probs = cvCreateMat( 1, 1, sample->type );
|
||
|
|
||
|
cvMatGaussPdf( sample, mean, cov, _probs, normalize, logprob );
|
||
|
prob = cvmGet(_probs, 0, 0);
|
||
|
|
||
|
cvReleaseMat( &_probs );
|
||
|
return prob;
|
||
|
}
|
||
|
|
||
|
|
||
|
#endif
|