You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

286 lines
9.5 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_STITCHING_SEAM_FINDERS_HPP__
#define __OPENCV_STITCHING_SEAM_FINDERS_HPP__
#include <set>
#include "opencv2/core.hpp"
#include "opencv2/opencv_modules.hpp"
namespace cv {
namespace detail {
//! @addtogroup stitching_seam
//! @{
/** @brief Base class for a seam estimator.
*/
class CV_EXPORTS SeamFinder
{
public:
virtual ~SeamFinder() {}
/** @brief Estimates seams.
@param src Source images
@param corners Source image top-left corners
@param masks Source image masks to update
*/
virtual void find(const std::vector<UMat> &src, const std::vector<Point> &corners,
std::vector<UMat> &masks) = 0;
};
/** @brief Stub seam estimator which does nothing.
*/
class CV_EXPORTS NoSeamFinder : public SeamFinder
{
public:
void find(const std::vector<UMat>&, const std::vector<Point>&, std::vector<UMat>&) {}
};
/** @brief Base class for all pairwise seam estimators.
*/
class CV_EXPORTS PairwiseSeamFinder : public SeamFinder
{
public:
virtual void find(const std::vector<UMat> &src, const std::vector<Point> &corners,
std::vector<UMat> &masks);
protected:
void run();
/** @brief Resolves masks intersection of two specified images in the given ROI.
@param first First image index
@param second Second image index
@param roi Region of interest
*/
virtual void findInPair(size_t first, size_t second, Rect roi) = 0;
std::vector<UMat> images_;
std::vector<Size> sizes_;
std::vector<Point> corners_;
std::vector<UMat> masks_;
};
/** @brief Voronoi diagram-based seam estimator.
*/
class CV_EXPORTS VoronoiSeamFinder : public PairwiseSeamFinder
{
public:
virtual void find(const std::vector<UMat> &src, const std::vector<Point> &corners,
std::vector<UMat> &masks);
virtual void find(const std::vector<Size> &size, const std::vector<Point> &corners,
std::vector<UMat> &masks);
private:
void findInPair(size_t first, size_t second, Rect roi);
};
class CV_EXPORTS DpSeamFinder : public SeamFinder
{
public:
enum CostFunction { COLOR, COLOR_GRAD };
DpSeamFinder(CostFunction costFunc = COLOR);
CostFunction costFunction() const { return costFunc_; }
void setCostFunction(CostFunction val) { costFunc_ = val; }
virtual void find(const std::vector<UMat> &src, const std::vector<Point> &corners,
std::vector<UMat> &masks);
private:
enum ComponentState
{
FIRST = 1, SECOND = 2, INTERS = 4,
INTERS_FIRST = INTERS | FIRST,
INTERS_SECOND = INTERS | SECOND
};
class ImagePairLess
{
public:
ImagePairLess(const std::vector<Mat> &images, const std::vector<Point> &corners)
: src_(&images[0]), corners_(&corners[0]) {}
bool operator() (const std::pair<size_t, size_t> &l, const std::pair<size_t, size_t> &r) const
{
Point c1 = corners_[l.first] + Point(src_[l.first].cols / 2, src_[l.first].rows / 2);
Point c2 = corners_[l.second] + Point(src_[l.second].cols / 2, src_[l.second].rows / 2);
int d1 = (c1 - c2).dot(c1 - c2);
c1 = corners_[r.first] + Point(src_[r.first].cols / 2, src_[r.first].rows / 2);
c2 = corners_[r.second] + Point(src_[r.second].cols / 2, src_[r.second].rows / 2);
int d2 = (c1 - c2).dot(c1 - c2);
return d1 < d2;
}
private:
const Mat *src_;
const Point *corners_;
};
class ClosePoints
{
public:
ClosePoints(int minDist) : minDist_(minDist) {}
bool operator() (const Point &p1, const Point &p2) const
{
int dist2 = (p1.x-p2.x) * (p1.x-p2.x) + (p1.y-p2.y) * (p1.y-p2.y);
return dist2 < minDist_ * minDist_;
}
private:
int minDist_;
};
void process(
const Mat &image1, const Mat &image2, Point tl1, Point tl2, Mat &mask1, Mat &mask2);
void findComponents();
void findEdges();
void resolveConflicts(
const Mat &image1, const Mat &image2, Point tl1, Point tl2, Mat &mask1, Mat &mask2);
void computeGradients(const Mat &image1, const Mat &image2);
bool hasOnlyOneNeighbor(int comp);
bool closeToContour(int y, int x, const Mat_<uchar> &contourMask);
bool getSeamTips(int comp1, int comp2, Point &p1, Point &p2);
void computeCosts(
const Mat &image1, const Mat &image2, Point tl1, Point tl2,
int comp, Mat_<float> &costV, Mat_<float> &costH);
bool estimateSeam(
const Mat &image1, const Mat &image2, Point tl1, Point tl2, int comp,
Point p1, Point p2, std::vector<Point> &seam, bool &isHorizontal);
void updateLabelsUsingSeam(
int comp1, int comp2, const std::vector<Point> &seam, bool isHorizontalSeam);
CostFunction costFunc_;
// processing images pair data
Point unionTl_, unionBr_;
Size unionSize_;
Mat_<uchar> mask1_, mask2_;
Mat_<uchar> contour1mask_, contour2mask_;
Mat_<float> gradx1_, grady1_;
Mat_<float> gradx2_, grady2_;
// components data
int ncomps_;
Mat_<int> labels_;
std::vector<ComponentState> states_;
std::vector<Point> tls_, brs_;
std::vector<std::vector<Point> > contours_;
std::set<std::pair<int, int> > edges_;
};
/** @brief Base class for all minimum graph-cut-based seam estimators.
*/
class CV_EXPORTS GraphCutSeamFinderBase
{
public:
enum CostType { COST_COLOR, COST_COLOR_GRAD };
};
/** @brief Minimum graph cut-based seam estimator. See details in @cite V03 .
*/
class CV_EXPORTS GraphCutSeamFinder : public GraphCutSeamFinderBase, public SeamFinder
{
public:
GraphCutSeamFinder(int cost_type = COST_COLOR_GRAD, float terminal_cost = 10000.f,
float bad_region_penalty = 1000.f);
~GraphCutSeamFinder();
void find(const std::vector<UMat> &src, const std::vector<Point> &corners,
std::vector<UMat> &masks);
private:
// To avoid GCGraph dependency
class Impl;
Ptr<PairwiseSeamFinder> impl_;
};
#ifdef HAVE_OPENCV_CUDALEGACY
class CV_EXPORTS GraphCutSeamFinderGpu : public GraphCutSeamFinderBase, public PairwiseSeamFinder
{
public:
GraphCutSeamFinderGpu(int cost_type = COST_COLOR_GRAD, float terminal_cost = 10000.f,
float bad_region_penalty = 1000.f)
: cost_type_(cost_type), terminal_cost_(terminal_cost),
bad_region_penalty_(bad_region_penalty) {}
void find(const std::vector<cv::UMat> &src, const std::vector<cv::Point> &corners,
std::vector<cv::UMat> &masks);
void findInPair(size_t first, size_t second, Rect roi);
private:
void setGraphWeightsColor(const cv::Mat &img1, const cv::Mat &img2, const cv::Mat &mask1, const cv::Mat &mask2,
cv::Mat &terminals, cv::Mat &leftT, cv::Mat &rightT, cv::Mat &top, cv::Mat &bottom);
void setGraphWeightsColorGrad(const cv::Mat &img1, const cv::Mat &img2, const cv::Mat &dx1, const cv::Mat &dx2,
const cv::Mat &dy1, const cv::Mat &dy2, const cv::Mat &mask1, const cv::Mat &mask2,
cv::Mat &terminals, cv::Mat &leftT, cv::Mat &rightT, cv::Mat &top, cv::Mat &bottom);
std::vector<Mat> dx_, dy_;
int cost_type_;
float terminal_cost_;
float bad_region_penalty_;
};
#endif
//! @}
} // namespace detail
} // namespace cv
#endif // __OPENCV_STITCHING_SEAM_FINDERS_HPP__