/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * *

© Copyright (c) 2022 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "MLX75306.hpp" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ CAN_HandleTypeDef hcan1; SPI_HandleTypeDef hspi1; UART_HandleTypeDef huart2; /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_CAN1_Init(void); static void MX_SPI1_Init(void); static void MX_USART2_UART_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ void UART_print(string message){ message += "\r\n"; HAL_UART_Transmit(&huart2, (const uint8_t *) message.c_str(), message.length(), message.length()); } void Print_status(MLX75306::Status_byte status){ UART_print("MLX75306 Status:"); string op_mode = status.operational_mode ? "Normal" : "Sleep"; UART_print("Operational Mode: " + op_mode); string power_up_state = status.power_up_in_progress ? "Done" : "In progress"; UART_print("Power up: " + power_up_state); string device_mode = status.device_mode ? "User" : "Test"; UART_print("Device mode: " + device_mode); UART_print("Command counter " + to_string(status.command_counter)); } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void){ /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_CAN1_Init(); MX_SPI1_Init(); MX_USART2_UART_Init(); /* USER CODE BEGIN 2 */ UART_print("\r\nBUTCube Sun Sensor module is ready ...\r\n"); auto sensor = new MLX75306(hspi1, MLX75306::Chip_select_pin{ GPIOA, GPIO_PIN_4 }); sensor->Init(); sensor->Wake_up(); sensor->Zebra_pattern_1(); HAL_Delay(10); Print_status(sensor->Status()); auto readout = sensor->Read_all_8bit(); UART_print("\r\nBytes of zebra pattern 1:"); for (auto &byte:readout) { UART_print(to_string(byte)); } sensor->Integrate(1000); HAL_Delay(50); readout = sensor->Read_all_8bit(); UART_print("\r\nBytes of integrated image:"); for (auto &byte:readout) { UART_print(to_string(byte)); } UART_print(""); // EOL Print_status(sensor->Status()); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ HAL_GPIO_WritePin(GPIOB, LED2_Pin, GPIO_PIN_RESET); HAL_GPIO_WritePin(GPIOB, LED1_Pin, GPIO_PIN_SET); HAL_Delay(100); HAL_GPIO_WritePin(GPIOB, LED2_Pin, GPIO_PIN_SET); HAL_GPIO_WritePin(GPIOB, LED1_Pin, GPIO_PIN_RESET); HAL_Delay(100); } /* USER CODE END 3 */ } // main /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void){ RCC_OscInitTypeDef RCC_OscInitStruct = { 0 }; RCC_ClkInitTypeDef RCC_ClkInitStruct = { 0 }; RCC_PeriphCLKInitTypeDef PeriphClkInit = { 0 }; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = 1; RCC_OscInitStruct.PLL.PLLN = 10; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7; RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2; RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK) { Error_Handler(); } PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART2; PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_PCLK1; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } /** Configure the main internal regulator output voltage */ if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK) { Error_Handler(); } } // SystemClock_Config /** * @brief CAN1 Initialization Function * @param None * @retval None */ static void MX_CAN1_Init(void){ /* USER CODE BEGIN CAN1_Init 0 */ /* USER CODE END CAN1_Init 0 */ /* USER CODE BEGIN CAN1_Init 1 */ /* USER CODE END CAN1_Init 1 */ hcan1.Instance = CAN1; hcan1.Init.Prescaler = 32; hcan1.Init.Mode = CAN_MODE_NORMAL; hcan1.Init.SyncJumpWidth = CAN_SJW_1TQ; hcan1.Init.TimeSeg1 = CAN_BS1_1TQ; hcan1.Init.TimeSeg2 = CAN_BS2_1TQ; hcan1.Init.TimeTriggeredMode = DISABLE; hcan1.Init.AutoBusOff = DISABLE; hcan1.Init.AutoWakeUp = DISABLE; hcan1.Init.AutoRetransmission = DISABLE; hcan1.Init.ReceiveFifoLocked = DISABLE; hcan1.Init.TransmitFifoPriority = DISABLE; if (HAL_CAN_Init(&hcan1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN CAN1_Init 2 */ /* USER CODE END CAN1_Init 2 */ } /** * @brief SPI1 Initialization Function * @param None * @retval None */ static void MX_SPI1_Init(void){ /* USER CODE BEGIN SPI1_Init 0 */ /* USER CODE END SPI1_Init 0 */ /* USER CODE BEGIN SPI1_Init 1 */ /* USER CODE END SPI1_Init 1 */ /* SPI1 parameter configuration*/ hspi1.Instance = SPI1; hspi1.Init.Mode = SPI_MODE_MASTER; hspi1.Init.Direction = SPI_DIRECTION_2LINES; hspi1.Init.DataSize = SPI_DATASIZE_8BIT; hspi1.Init.CLKPolarity = SPI_POLARITY_HIGH; hspi1.Init.CLKPhase = SPI_PHASE_2EDGE; hspi1.Init.NSS = SPI_NSS_SOFT; hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256; hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi1.Init.TIMode = SPI_TIMODE_DISABLE; hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; hspi1.Init.CRCPolynomial = 7; hspi1.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE; hspi1.Init.NSSPMode = SPI_NSS_PULSE_DISABLE; if (HAL_SPI_Init(&hspi1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN SPI1_Init 2 */ /* USER CODE END SPI1_Init 2 */ } /** * @brief USART2 Initialization Function * @param None * @retval None */ static void MX_USART2_UART_Init(void){ /* USER CODE BEGIN USART2_Init 0 */ /* USER CODE END USART2_Init 0 */ /* USER CODE BEGIN USART2_Init 1 */ /* USER CODE END USART2_Init 1 */ huart2.Instance = USART2; huart2.Init.BaudRate = 115200; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART2_Init 2 */ /* USER CODE END USART2_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void){ GPIO_InitTypeDef GPIO_InitStruct = { 0 }; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOH_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOA, CS__1_Pin | CS__2_Pin | CAN_RS_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOB, FRAM_CS_Pin | LED2_Pin | LED1_Pin | CS__3_Pin | CS__4_Pin, GPIO_PIN_RESET); /*Configure GPIO pins : FR_RDY__1_Pin FR_RDY__2_Pin */ GPIO_InitStruct.Pin = FR_RDY__1_Pin | FR_RDY__2_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pin : CS__1_Pin */ GPIO_InitStruct.Pin = CS__1_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(CS__1_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pins : FRAM_CS_Pin LED2_Pin LED1_Pin CS__3_Pin CS__4_Pin */ GPIO_InitStruct.Pin = FRAM_CS_Pin | LED2_Pin | LED1_Pin | CS__3_Pin | CS__4_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pins : CS__2_Pin CAN_RS_Pin */ GPIO_InitStruct.Pin = CS__2_Pin | CAN_RS_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pin : FR_RDY__3_Pin */ GPIO_InitStruct.Pin = FR_RDY__3_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(FR_RDY__3_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : FR_RDY__4_Pin */ GPIO_InitStruct.Pin = FR_RDY__4_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(FR_RDY__4_GPIO_Port, &GPIO_InitStruct); } // MX_GPIO_Init /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void){ /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line){ /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/