/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body * @author : Adam Prochazka ****************************************************************************** * @attention * * Code outside of "USER CODE" blocks was generated by STM32CubeMX by STMicroelectronics and was not written by the author. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "tusb.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ I2C_HandleTypeDef hi2c1; SPI_HandleTypeDef hspi1; DMA_HandleTypeDef hdma_spi1_rx; DMA_HandleTypeDef hdma_spi1_tx; TIM_HandleTypeDef htim15; PCD_HandleTypeDef hpcd_USB_FS; /* USER CODE BEGIN PV */ uint16_t DistSensorAddr=0x52; int status=0; volatile int IntCount; #define isInterrupt 0 /* If isInterrupt = 1 then device working in interrupt mode, else device working in polling mode */ int SPI_Rx_Done_Flag = 0; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_SPI1_Init(void); static void MX_I2C1_Init(void); static void MX_USB_PCD_Init(void); static void MX_TIM15_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ uint16_t Distance = 0; uint16_t SignalRate; uint16_t AmbientRate; uint16_t SpadNum; uint8_t RangeStatus; /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_SPI1_Init(); MX_I2C1_Init(); MX_USB_PCD_Init(); MX_TIM15_Init(); /* USER CODE BEGIN 2 */ // Signalize user that device has started LED_On(); // Enable power to USB, without TinyUSB will not initialize HAL_PWREx_EnableVddUSB(); // Wait for power to stabilize HAL_Delay(100); // Initialize distance sensor status = VL53L1X_SensorInit(DistSensorAddr); // Set distance mode of distance sensor for long distance (2) status = VL53L1X_SetDistanceMode(DistSensorAddr, 2); // Set timing budget for each measurement status = VL53L1X_SetTimingBudgetInMs(DistSensorAddr, 100); status = VL53L1X_SetInterMeasurementInMs(DistSensorAddr, 100); // Start first measurement to wake sensor up status = VL53L1X_StartRanging(DistSensorAddr); HAL_Delay(1000); // Initialize TinyUSB tud_init(BOARD_DEVICE_RHPORT_NUM); SPI_Init(&hspi1); // USB utility function tud_task(); // Define variables for correct frame sending and capturing int last_sent_idx = 0; int buff_stop_idx = 0; uint16_t image_size = 0; uint8_t cdc_buff[CDC_BUFF_SIZE+CDC_FRAME_SIZE]; for(int i = 0; i < (CDC_BUFF_SIZE+CDC_FRAME_SIZE); i++) cdc_buff[i] = 0x00; // Clear frame buffer int Laser_LED_Switch = 0; // Variable for switching between LASER and LED // Initial states of LED and LASER (LED off, LASER on) HAL_GPIO_WritePin(VSET_LED_GPIO_Port, VSET_LED_Pin, GPIO_PIN_RESET); HAL_TIM_PWM_Start(&htim15, TIM_CHANNEL_1); // Initialize camera module Cam_Init(&hi2c1, &hspi1); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { // USB utility function tud_task(); // If there wasn't any image captured yet or the last one was sent out completely if(buff_stop_idx >= (int)image_size){ // Reset variables responsible for sending correct amount of received image buff_stop_idx = 0; last_sent_idx = 0; // Get current distance of probe inside the barrel VL53L1X_GetDistance(DistSensorAddr, &Distance); CS_Off(); CS_On(); // Start capturing frame and wait until it is done capturing Cam_Capture(&hspi1); // Switch between LASER and LED, so the optical output power of diodes has time to stabilize until next capture if(Laser_LED_Switch == 1){ Laser_LED_Switch = 0; __HAL_TIM_SET_COMPARE(&htim15, TIM_CHANNEL_1, 40); HAL_GPIO_WritePin(VSET_LED_GPIO_Port, VSET_LED_Pin, GPIO_PIN_RESET); } else{ Laser_LED_Switch = 1; __HAL_TIM_SET_COMPARE(&htim15, TIM_CHANNEL_1, 0); HAL_GPIO_WritePin(VSET_LED_GPIO_Port, VSET_LED_Pin, GPIO_PIN_SET); } // Get size of captured image, so that correct number of bytec can be read from camera and sent out image_size = Cam_FIFO_length(&hspi1); // Activate burst read out mode of camera module (no need for requesting each byte individually) Cam_Start_Burst_Read(&hspi1); continue; } // Image has not been completely sent out else { // Variable to save number of bytes that should be read from camera module int number_to_read = 0; // Determine how many bytes should be read from camera module - Is remaining image data to be read larger or smaller than framebuffer? if((buff_stop_idx + CDC_BUFF_SIZE) > (int) image_size){ number_to_read = (int) image_size - buff_stop_idx; } else{ number_to_read = CDC_BUFF_SIZE; } // Read determined amount of bytes from camera in blocking mode HAL_SPI_Receive(&hspi1, cdc_buff, number_to_read, HAL_MAX_DELAY); // Increment index of already read buffer data buff_stop_idx = buff_stop_idx + number_to_read; } // Variable to store how many bytes were sent during this iteration int current_sending_idx = 0; // Inform user that image data transfer started LED_On(); // Loop to send all image data inside cdc_buff in small CDC chunks do{ // USB utility function - has to be called between each cdc_write_flush() tud_task(); // How many bytes should be send in current CDC block int sendLen = CDC_FRAME_SIZE; if(last_sent_idx + CDC_FRAME_SIZE > buff_stop_idx){ sendLen = buff_stop_idx - last_sent_idx; } // Select bytes, that will be send during next CDC transfer tud_cdc_write(&cdc_buff[current_sending_idx], sendLen); // Increment index of data to be sent for next loop iteration current_sending_idx = current_sending_idx + sendLen; last_sent_idx = last_sent_idx + sendLen; // Transfer selected data through CDC tud_cdc_write_flush(); //Delay between sends - necessary for USB synchronization int i = 0; for(;i<4000;i++); } // Repeat until all data from buffer has been sent while(last_sent_idx < buff_stop_idx); // If whole image has been sent, send distance data of where image was captured if(buff_stop_idx >= (int)image_size){ // Delay for synchronization HAL_Delay(20); // USB utility function - has to be called, because it wasnt called after last tud_cdc_write_flush() tud_task(); // Format distance data between predefined header and footer, for clear decoding by receiver uint8_t distance_buff[12]; distance_buff[0] = 0xff; distance_buff[1] = 0xff; distance_buff[2] = 0xff; distance_buff[3] = 0x69; distance_buff[4] = (uint8_t)(Distance >> 8); distance_buff[5] = (Distance & 0xff); distance_buff[6] = 0xff; distance_buff[7] = 0x69; distance_buff[8] = 0xff; distance_buff[9] = 0xff; distance_buff[10] = '\n'; distance_buff[11] = '\r'; // Prepare to send formatted distance data of image through CDC tud_cdc_write(&distance_buff[0], 12); // Necessary delay for synchronization HAL_Delay(1); // Transfer prepared Distance data through CDC tud_cdc_write_flush(); // Necessary delay for synchronization HAL_Delay(1); // USB utility function - after write_flush() tud_task(); } // Inform user that transfer has been completed LED_Off(); /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK) { Error_Handler(); } /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI48|RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSI48State = RCC_HSI48_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = 1; RCC_OscInitStruct.PLL.PLLN = 10; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7; RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2; RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK) { Error_Handler(); } } /** * @brief I2C1 Initialization Function * @param None * @retval None */ static void MX_I2C1_Init(void) { /* USER CODE BEGIN I2C1_Init 0 */ /* USER CODE END I2C1_Init 0 */ /* USER CODE BEGIN I2C1_Init 1 */ /* USER CODE END I2C1_Init 1 */ hi2c1.Instance = I2C1; hi2c1.Init.Timing = 0x10909CEC; hi2c1.Init.OwnAddress1 = 0; hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c1.Init.OwnAddress2 = 0; hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK; hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; if (HAL_I2C_Init(&hi2c1) != HAL_OK) { Error_Handler(); } /** Configure Analogue filter */ if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK) { Error_Handler(); } /** Configure Digital filter */ if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN I2C1_Init 2 */ /* USER CODE END I2C1_Init 2 */ } /** * @brief SPI1 Initialization Function * @param None * @retval None */ static void MX_SPI1_Init(void) { /* USER CODE BEGIN SPI1_Init 0 */ /* USER CODE END SPI1_Init 0 */ /* USER CODE BEGIN SPI1_Init 1 */ /* USER CODE END SPI1_Init 1 */ /* SPI1 parameter configuration*/ hspi1.Instance = SPI1; hspi1.Init.Mode = SPI_MODE_MASTER; hspi1.Init.Direction = SPI_DIRECTION_2LINES; hspi1.Init.DataSize = SPI_DATASIZE_8BIT; hspi1.Init.CLKPolarity = SPI_POLARITY_LOW; hspi1.Init.CLKPhase = SPI_PHASE_1EDGE; hspi1.Init.NSS = SPI_NSS_SOFT; hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32; hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi1.Init.TIMode = SPI_TIMODE_DISABLE; hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; hspi1.Init.CRCPolynomial = 7; hspi1.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE; hspi1.Init.NSSPMode = SPI_NSS_PULSE_DISABLE; if (HAL_SPI_Init(&hspi1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN SPI1_Init 2 */ /* USER CODE END SPI1_Init 2 */ } /** * @brief TIM15 Initialization Function * @param None * @retval None */ static void MX_TIM15_Init(void) { /* USER CODE BEGIN TIM15_Init 0 */ /* USER CODE END TIM15_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; TIM_OC_InitTypeDef sConfigOC = {0}; TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0}; /* USER CODE BEGIN TIM15_Init 1 */ /* USER CODE END TIM15_Init 1 */ htim15.Instance = TIM15; htim15.Init.Prescaler = 40; htim15.Init.CounterMode = TIM_COUNTERMODE_UP; htim15.Init.Period = 1000; htim15.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim15.Init.RepetitionCounter = 0; htim15.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim15) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim15, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } if (HAL_TIM_PWM_Init(&htim15) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim15, &sMasterConfig) != HAL_OK) { Error_Handler(); } sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 500; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET; sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET; if (HAL_TIM_PWM_ConfigChannel(&htim15, &sConfigOC, TIM_CHANNEL_1) != HAL_OK) { Error_Handler(); } sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE; sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE; sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF; sBreakDeadTimeConfig.DeadTime = 0; sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE; sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH; sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE; if (HAL_TIMEx_ConfigBreakDeadTime(&htim15, &sBreakDeadTimeConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM15_Init 2 */ /* USER CODE END TIM15_Init 2 */ HAL_TIM_MspPostInit(&htim15); } /** * @brief USB Initialization Function * @param None * @retval None */ static void MX_USB_PCD_Init(void) { /* USER CODE BEGIN USB_Init 0 */ /* USER CODE END USB_Init 0 */ /* USER CODE BEGIN USB_Init 1 */ /* USER CODE END USB_Init 1 */ hpcd_USB_FS.Instance = USB; hpcd_USB_FS.Init.dev_endpoints = 8; hpcd_USB_FS.Init.speed = PCD_SPEED_FULL; hpcd_USB_FS.Init.phy_itface = PCD_PHY_EMBEDDED; hpcd_USB_FS.Init.Sof_enable = DISABLE; hpcd_USB_FS.Init.low_power_enable = DISABLE; hpcd_USB_FS.Init.lpm_enable = DISABLE; hpcd_USB_FS.Init.battery_charging_enable = DISABLE; if (HAL_PCD_Init(&hpcd_USB_FS) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USB_Init 2 */ /* USER CODE END USB_Init 2 */ } /** * Enable DMA controller clock */ static void MX_DMA_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMA1_CLK_ENABLE(); /* DMA interrupt init */ /* DMA1_Channel2_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel2_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel2_IRQn); /* DMA1_Channel3_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel3_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel3_IRQn); } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOA, DEBUG_LED_Pin|VSET_LED_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOB, CHIP_SELECT_Pin|LD3_Pin, GPIO_PIN_RESET); /*Configure GPIO pins : DEBUG_LED_Pin VSET_LED_Pin */ GPIO_InitStruct.Pin = DEBUG_LED_Pin|VSET_LED_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pins : CHIP_SELECT_Pin LD3_Pin */ GPIO_InitStruct.Pin = CHIP_SELECT_Pin|LD3_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); } /* USER CODE BEGIN 4 */ void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi) { SPI_Rx_Done_Flag = 1; } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */